The finite element method (FEM) model of a piezoelectric macro fiber composite (MFC) is presented. Using a specially developed numerical model, the complete set of macroscopic values of elastic compliance and piezoelectric tensors is computed. These values are useful in numerical FEM simulations of more complex systems such as noise and vibration suppression devices or active acoustic metamaterials, where the MFC actuator can be approximated by a plate-like uniform piezoelectric material. Using this approach, a great reduction of the FEM model complexity can be achieved. The computed numerical macroscopic values of the MFC actuator are compared with MFC manufacturerʼs data and with data obtained using different computational methods. A demonstration of active tuning of effective elastic constants of the piezoelectric MFC actuator by means of a shunt electric circuit is presented. The effective material constants are computed using the FEM model developed. The effect of the shunt circuit capacitance on the effective anisotropic Youngʼs moduli is analyzed in detail. A method for finding the proper shunt circuit adjustment that yields the maximum values of the MFC actuator Youngʼs modulus is shown. Possible applications to noise and vibration suppression are discussed.
In this Article, we report on the observation of ferroelectric domain pattern in the whole volume of the ferroelectric barium titanate single crystal by means of the digital holographic microscopy (DHM). Our particular implementation of DHM is based on the Mach-Zehnder interferometer and the numerical processing of data employs the angular spectrum method. A modification of the DHM technique, which allows a fast and accurate determination of the domain walls, i.e. narrow regions separating the antiparallel domains, is presented. Accuracy and sensitivity of the method are discussed. Using this approach, the determination of important geometric parameters of the ferroelectric domain patterns (such as domain spacing or the volume fraction of the anti-parallel domains) is possible. In addition to the earlier DHM studies of domain patterns in lithium niobate and lithium tantalate, our results indicate that the DHM is a convenient method to study a dynamic evolution of ferroelectric domain patterns in all perovskite single crystals.
The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC) actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction with respect to its surface and to increase the acoustic transmission loss of the piezoelectric MFC-glass composite structure. The effect of the MFC actuators connected to the negative capacitance shunt circuit on the surface distribution of the normal vibration amplitude is studied using frequency-shifted digital holography (FSDH). The principle of the used FSDH method is described in the paper. The frequency dependence of the acoustic transmission loss through the piezoelectric MFC-glass composite structure is estimated using measurements of the specific acoustic impedance of the curved glass shell. The specific acoustic impedance is measured using two microphones and a laser Doppler vibrometer (LDV). The results from the LDV measurements are compared with the FSDH data. The results of the experiments show that using this approach, the acoustic transmission loss in a glass shell can be increased by 36 dB in the frequency range around 247 Hz and by 25 dB in the frequency range around 258 Hz. The experiments indicate that FSDH measurements provide an efficient tool that can be used for fast and accurate measurements of the acoustic transmission loss in large planar structures.
Active acoustic metasurfaces (AAMSs) have been recently recognized as very efficient sound shielding structures, which can have large lateral dimensions perpendicular to the direction of the sound wave propagation but very short lateral dimension along the direction of the sound wavevector. The sound shielding principle of AAMSs is based on control of the specific acoustic impedance (SAI). This is achieved by means of an active tuning of elastic properties of piezoelectric transducers, which, therefore, represent the core element of the AAMSs. Using this approach, it is possible to actively control the acoustic coefficients of transmission and reflection of AAMSs. An important point, which has been recently discovered, is the fact that the great suppression of the transmission coefficient can be achieved in the regime, when the SAI of the AAMS is negative. The function of the AAMS in varying operational conditions or in a wide frequency range, however, put delicate stability conditions on the negative values of SAI. In order to keep the AAMS in the stable operation, a concept of adaptive acoustic metasurfaces (AdAMSs) is introduced in this paper. Methods for the real-time estimation and the active control of the SAI values of the AdAMSs are presented. It is shown that the accurate control of the distribution of the SAI on the surface of the AdAMS enables to control the transmitted sound field not only in the magnitude but also in the direction of the transmitted sound wave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.