Land use and land cover are continuously changing in today’s world. Both domains, therefore, have to rely on updates of external information sources from which the relevant land use/land cover (classification) is extracted. Satellite images are frequent candidates due to their temporal and spatial resolution. On the contrary, the extraction of relevant land use/land cover information is demanding in terms of knowledge base and time. The presented approach offers a proof-of-concept machine-learning pipeline that takes care of the entire complex process in the following manner. The relevant Sentinel-2 images are obtained through the pipeline. Later, cloud masking is performed, including the linear interpolation of merged-feature time frames. Subsequently, four-dimensional arrays are created with all potential training data to become a basis for estimators from the scikit-learn library; the LightGBM estimator is then used. Finally, the classified content is applied to the open land use and open land cover databases. The verification of the provided experiment was conducted against detailed cadastral data, to which Shannon’s entropy was applied since the number of cadaster information classes was naturally consistent. The experiment showed a good overall accuracy (OA) of 85.9%. It yielded a classified land use/land cover map of the study area consisting of 7188 km2 in the southern part of the South Moravian Region in the Czech Republic. The developed proof-of-concept machine-learning pipeline is replicable to any other area of interest so far as the requirements for input data are met.
Efforts related to minimizing the environmental burden caused by agricultural activities and increasing economic efficiency are key contemporary drivers in the precision agriculture domain. Controlled Traffic Farming (CTF) techniques are being applied against soil compaction creation, using the on-line optimization of trajectory planning for soil-sensitive field operations. The research presented in this paper aims at a proof-of-concept solution with respect to optimizing farm machinery trajectories in order to minimize the environmental burden and increase economic efficiency. As such, it further advances existing CTF solutions by including (1) efficient plot divisions in 3D, (2) the optimization of entry and exit points of both plot and plot segments, (3) the employment of more machines in parallel and (4) obstacles in a farm machinery trajectory. The developed algorithm is expressed in terms of unified modeling language (UML) activity diagrams as well as pseudo-code. Results were visualized in 2D and 3D to demonstrate terrain impact. Verifications were conducted at a fully operational commercial farm (Rostěnice, the Czech Republic) against second-by-second sensor measurements of real farm machinery trajectories.
Yield is one of the key indicators in agriculture. The most common practices provide only one yield value for a whole field according to the weight of the harvested crop. On the contrary, precision agriculture techniques discover spatial patterns within a field to minimise the environmental burden caused by agricultural activities. Field harvesters equipped with sensors provide more detailed and spatially localised values. The measurements from such sensors need to be filtered and interpolated for the purposes of follow-up analyses and interpretations. This study verified the differences between three methods of interpolation (Inverse Distance Weighted, Inverse Distance Squared and Ordinary Kriging) derived from field sensor measurements that were (1) obtained directly from the field harvester, (2) processed by global filters, and (3) processed by global and local filters. Statistical analyses evaluated the results of interpolations from three fully operational Czech fields. The revealed spatial patterns, as well as recommendations regarding the suitability of the interpolation methods used, are presented at the end of this paper.
Efforts related to minimising the environmental burden caused by agricultural activities are key contemporary drivers in the precision agriculture domain. Controlled Traffic Farming (CTF) techniques are being applied against soil compaction creation, using on-line optimization of route planning for soil-sensitive field operations. The research presented in this paper aims at optimizing farm machinery routes to minimize the environmental burden. As such, it further advances existing CTF solutions by its complexity including (1) efficient field divisions, (2) U-turns in headlands, (3) obstacles in a farm machinery route and (4) terrain specifics. The developed algorithm is expressed as UML activity diagrams as well as pseudo-code. Results were visualized in 2D and 3D to demonstrate terrain impact. Verifications were conducted at a fully operational commercial farm (Rostěnice, the Czech Republic) against second-by-second sensor measurements of real farm machinery trajectories. The developed algorithm addresses two main viewpoints: economic (saved route, fuel and time) and environmental (among other, reductions of soil compactness and erosion, an increase of soil infiltration rate).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.