Background and aims Probiotics and their metabolic products, here called postbiotics, have been proposed as food supplements for a healthier intestinal homeostasis, but also as therapeutic aids in inflammatory bowel disease (IBD) with, however, very little clinical benefit. This may be due to the lack of reliable preclinical models for testing the efficacy of different strains. Methods The activity of three probiotic strains of Lactobacillus (or a postbiotic) was analysed and compared with a pathogenic strain of Salmonella on a novel organ culture system of human healthy and IBD intestinal mucosa developed in our laboratory. The system maintains an apical to basolateral polarity during stimulation due to the presence of a glued cave cylinder. The cylinder is detached at the end of the experiment and the tissue is processed for histology and immunohistochemistry. Cytokines released from the basolateral side are analysed. Results The model system provides several physiological characteristics typical of a mucosal microenvironment including the presence of an organised mucus layer and an apical to basolateral polarity.
The use of probiotics and synbiotics in the food industry or as food supplements for a balanced diet and improved gut homeostasis has been blooming for the past decade. As feedback from healthy consumers is rather enthusiastic, a lot of effort is currently directed in elucidating the mechanisms of interaction between beneficial microbes and barrier and immune function of the host. The use of probiotics or synbiotics for treating certain pathologies has also been examined, however, the outcome has not always been favourable. In most cases, the effect of the administered probiotic is evident when the bacteria are still alive at the time they reach the small and large intestine, suggesting that it is dependent on the metabolic activity of the bacteria. Indeed, in some occasions it has been shown that the culture supernatant of these bacteria mediates the immunomodulatory effect conferred to the host. Recent work on relevant probiotic strains has also led to the isolation and characterisation of certain probiotic-produced, soluble factors, here called postbiotics, which were sufficient to elicit the desired response. Here, we summarise these recent findings and propose the use of purified and well characterised postbiotic components as a safer alternative for clinical applications, especially in chronic inflammatory conditions like inflammatory bowel disease, where probiotics have not yet given encouraging results as far as induction of remission is concerned.
BackgroundThymic stromal lymphopoietin (TSLP) is a cytokine with pleiotropic functions in the immune system. It has been associated with allergic reactions in the skin and lungs but also homeostatic tolerogenic responses in the thymus and gut.ObjectiveIn human subjects TSLP is present in 2 isoforms, short and long. Here we wanted to investigate the differential expression of the TSLP isoforms and discern their biological implications under homeostatic or inflammatory conditions.MethodsWe evaluated the expression of TSLPs in tissues from healthy subjects, patients with ulcerative colitis, patients with celiac disease, and patients with atopic dermatitis and on epithelial cells and keratinocytes under steady-state conditions or after stimulation. We then tested the immune activity of TSLP isoforms both in vitro and in vivo.ResultsWe showed that TSLP isoforms are responsible for 2 opposite immune functions. The short isoform is expressed under steady-state conditions and exerts anti-inflammatory activities by affecting the capacity of PBMCs and dendritic cells to produce inflammatory cytokines. Moreover, the short isoform TSLP ameliorates experimental colitis in mice and prevents endotoxin shock. The long isoform of TSLP is proinflammatory and is only expressed during inflammation. The isoforms are differentially regulated by pathogenic bacteria, such as Salmonella species and adhesive-invasive Escherichia coli.ConclusionsWe have solved the dilemma of TSLP being both homeostatic and inflammatory. The TSLP isoform ratio is altered during several inflammatory disorders, with strong implications in disease treatment and prevention. Indeed, targeting of the long isoform of TSLP at the C-terminal portion, which is common to both isoforms, might lead to unwanted side effects caused by neutralization of the homeostatic short isoform.
p21 is a cell-cycle inhibitor that is also known to suppress autoimmunity. Here, we provide evidence of a novel role for p21 as an inhibitor of macrophage activation. LPS stimulation of p21-deficient peritoneal macrophages induced increased activation compared with controls, with elevated production of proinflammatory mediators such as TNF-a and IL-1b. The enhanced activity of LPS-stimulated p21-deficient macrophages correlated with increased activity of the transcription factor NF-jB. LPS stimulation of p21-deficient macrophages led to increased IjBa kinase activity, and increased IjBa phosphorylation and degradation, resulting in elevated NF-jB activity. The effect of p21 in macrophage activation was independent of its cell-cycle inhibitory role. p21 À/À mice showed greater sensitivity to LPS-induced septic shock than did WT mice, indicating that p21 contributes to maintenance of a balanced response to inflammatory stimuli and suggesting biological significance for the role of p21 in macrophage activation. Our findings project a role for p21 in the control of NF-jB-associated inflammation, and suggest that therapeutic modulation of p21 expression could be beneficial in inflammation-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.