The Mediterranean countries are the largest producers of olives with Spain taking the lead in olive oil production. A two-phase extraction system is used to produce oil and dry olive residue (DOR), a waste product. DOR biochar was tested as an amendment for contaminated soils to reduce the trace element (TE) contents in crops. A DOR sample was transformed into biochar at 350°C and 500°C, and a pot experiment was conducted, where spring wheat was grown. Moreover, the mutual effect of biochar application and arbuscular mycorrhizal fungi (AMF) inoculation was assessed. The results showed the decreasing extractable proportions of Cd in the treated soils, whereas an ambiguous effect of DOR biochar on the mobility of As, Pb, and Zn in soil was observed. The changes in TE in the treated soils were related to enhanced soil pH due to the biochar application. Stepwise increases in extractable soil potassium (K) proportions were determined because of the high content of K in DOR. The element contents in wheat plants were affected by an interaction of the soil element contents and pH, and biochar pyrolysis temperature. The AMF inoculation did not affect the biochar-induced changes in element fate in the soils. The results proved the ability of DOR-based biochar to serve as the source of nutrients, especially K. However, further research is necessary to test a wider range the application rates of biochar, as well as the long-term fate of biochar in the treated soils.
Thallium (Tl) is a toxic trace element with a highly negative effect on the environment. For phytoextraction purposes, it is important to know the limitations of plant growth. In this study, we conducted experiments with a model Tl-hyperaccumulating plant (Sinapis alba L., white mustard) to better understand the plant tolerance and/or associated detoxification mechanisms under extreme Tl doses (accumulative 0.7/1.4 mg Tl, in total). Both the hydroponic/semi-hydroponic (artificial soil) cultivation variants were studied in detail. The Tl bioaccumulation potential for the tested plant reached up to 1% of the total supplied Tl amount. Furthermore, it was revealed that the plants grown in the soil-like system did not tolerate Tl concentrations in nutrient solutions higher than ~1 mg/L, i.e., wilting symptoms were evident. Surprisingly, for the plants grown in hydroponic solutions, the tolerable Tl concentration was by contrast at least 2-times higher (≥ 2 mg Tl/L), presumably mimicking the K biochemistry. The obtained hydroponic/semi-hydroponic phytoextraction data can serve, in combination, as a model for plant-assisted remediation of soils or mining/processing wastes enriched in Tl, or possibly for environmental cycling of Tl in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.