Many gene expression quantitative trait locus (eQTL) studies have published their summary statistics, which can be used to gain insight into complex human traits by downstream analyses, such as fine mapping and co-localization. However, technical differences between these datasets are a barrier to their widespread use. Consequently, target genes for most genome-wide association study (GWAS) signals have still not been identified. In the present study, we present the eQTL Catalogue (https://www.ebi.ac.uk/eqtl), a resource of quality-controlled, uniformly re-computed gene expression and splicing QTLs from 21 studies. We find that, for matching cell types and tissues, the eQTL effect sizes are highly reproducible between studies. Although most QTLs were shared between most bulk tissues, we identified a greater diversity of cell-type-specific QTLs from purified cell types, a subset of which also manifested as new disease co-localizations. Our summary statistics are freely available to enable the systematic interpretation of human GWAS associations across many cell types and tissues.
An increasing number of gene expression quantitative trait locus (QTL) studies have made summary statistics publicly available, which can be used to gain insight into human complex traits by downstream analyses such as fine-mapping and colocalisation. However, differences between these datasets in their variants tested, allele codings, and in the transcriptional features quantified are a barrier to their widespread use. Here, we present the eQTL Catalogue, a resource which contains quality controlled, uniformly re-computed QTLs from 19 eQTL publications. In addition to gene expression QTLs, we have also identified QTLs at the level of exon expression, transcript usage, and promoter, splice junction and 3ʹ end usage. Our summary statistics can be downloaded by FTP or accessed via a REST API and are also accessible via the Open Targets Genetics Portal. We demonstrate how the eQTL Catalogue and GWAS Catalog APIs can be used to perform colocalisation analysis between GWAS and QTL results without downloading and reformatting summary statistics. New datasets will continuously be added to the eQTL Catalogue, enabling systematic interpretation of human GWAS associations across a large number of cell types and tissues. The eQTL Catalogue is available at https
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.