Energy efficiency improvement and ecological safety of heat power plants are urgent problems, which require scientifically grounded approaches and solutions. These problems can be solved partly within the presented heat-and-power cycles by including contact energy exchange equipment in the circuits of existing installations. A significant positive effect is obtained in the contact energy exchange installations, such as gas-steam installation 'Aquarius' and the contact hydrogen heat generator that also can use hydrogen as a fuel. In these plants, the efficiency increases approximately by 10-12% in comparison with traditional installations, and the concentration of toxic substances, such as nitrogen oxides and carbon monoxide in flue gas can be reduced to 30 mg/m 3 and to 5 mg/m 3 , respectively. Moreover, the plants additionally 'generate' the clean water, which can be used for technical purposes.
The article analyses the effect of temperature distribution at different points of the irradiation zone on the nature of leakage of structural-phase transformations. The results of the X-structural analysis are given, which shows the presence of martensite and residual austenite in the treatment zone. The peculiarities of structural-phase transformations during laser heating are studied and their effect on strain value during laser shaping is determined. The results of experimental studies are given, according to which, if the mechanisms for forming the temperature gradient and polymorphic transformations (for 65G steel) operate in parallel, the amount of deformation is one third of the sample for which only the temperature gradient mechanism works (12Х18N10Т steel).
Laser shaping of sheet materials is a flexible process and is carried out without force contact on the material, it allows forming, among other things, brittle, elastic and difficult-to-deformed materials. It is known that the main parameters of laser shaping are the beam power, the size of the focus zone and the speed of beam movement along the surface of the workpiece, however, the range of variation of these parameters is not unlimited, but due to the characteristics of a particular equipment. Therefore, it is necessary to develop an approach to selecting processing modes that can be selected from the range available on the equipment and at the same time obtain a predictable result. There is also a need to investigate a reproducibility of laser shaping results with a lot of pass-through processing. Actually, this study is aimed at solving these issues. In particular, the article formulates a provision on complex formation parameters that allow determining interchangeable modes of laser molding processing and varying parameters in ranges available on equipment. For this, the basic processing mode was chosen, formation was carried out with a fixed number of passes, after which, using complex parameters, alternative modes were determined and formation was carried out under these conditions with the same number of passes. The article also presents the methodology and results of experimental studies of checking the interchangeability of formation modes and the repeatability of formation results during processing along parallel and multi-directional trajectories. It was experimentally found that the deviation of the strain value obtained in alternative modes, compared to the base, and did not exceed 2.46% for a three-pass cycle and 5.8% - for a nine-pass cycle. And the repeatability of the formation results during laser shaping is quite high; the discrepancy in the deformation value did not exceed 5%, and, preferably, was lower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.