Neutrophilic granulocytes play a fundamental role in cardiovascular disease. They interact with platelet aggregates via the integrin Mac-1 and the platelet receptor glycoprotein Ibα (GPIbα). In vivo, GPIbα presentation is highly variable under different physiological and pathophysiological conditions. Here, we quantitatively determined the conditions for neutrophil adhesion in a biomimetic in vitro system, which allowed precise adjustment of the spacings between human GPIbα presented on the nanoscale from 60 to 200 nm. Unlike most conventional nanopatterning approaches, this method provided control over the local receptor density (spacing) rather than just the global receptor density. Under physiological flow conditions, neutrophils required a minimum spacing of GPIbα molecules to successfully adhere. In contrast, under low-flow conditions, neutrophils adhered on all tested spacings with subtle but nonlinear differences in cell response, including spreading area, spreading kinetics, adhesion maturation, and mobility. Surprisingly, Mac-1-dependent neutrophil adhesion was very robust to GPIbα density variations up to 1 order of magnitude. This complex response map indicates that neutrophil adhesion under flow and adhesion maturation are differentially regulated by GPIbα density. Our study reveals how Mac-1/GPIbα interactions govern cell adhesion and how neutrophils process the number of available surface receptors on the nanoscale. In the future, such in vitro studies can be useful to determine optimum therapeutic ranges for targeting this interaction.
Cells use integrin receptors to adhere onto surfaces by binding to ligands such as the arginine-glycine-aspartic acid (RGD) motif. Cancer cells make use of this adhesion process, which has motivated the development of integrin-directed drugs. However, those drugs may exert paradoxical effects on tumor progression, which raises the question of how integrin function is governed in tumor cells on the nanoscale. We have utilized precisely defined and tunable RGD ligand site densities spanning 1 order of magnitude, i.e., 103 to 1145 ligand sites/μm(2), by using RGD-functionalized gold nanoparticle patterns immobilized on glass by block copolymer (micellar) nanolithography. In an αVβ3 integrin-dependent fashion, human melanoma cells spread, formed focal contacts, and reorganized cytoskeletal fibers on a physiologically relevant RGD density of 349 sites/μm(2). Intriguingly, low doses of solute RGD "shifted" the optimal densities of immobilized ligand along with corresponding melanoma cell integrin clusters and cytoskeletal changes toward those typical for "intermediate" ligand presentation. Consequently, melanoma cells were forced into a "permissive" state, optimizing interactions with suboptimal nanostructured biomimetic surfaces, thus providing an explanation for the seemingly paradoxical effects on tumor progression and a potential clue for individualized antitumoral therapies.
Inhibition of constitutive and induced IKKbeta-activity through treatment with KINK-1 might increase tumor susceptibility to chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.