The combination of liquid biomarkers from a single blood tube can provide more comprehensive information on tumor development and progression in cancer patients compared to single analysis. Here, we evaluated whether a combined analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating cell-free microRNA (miRNA) in total plasma and extracellular vesicles (EV) from the same blood sample is feasible and how the results are influenced by the choice of different blood tubes. Peripheral blood from 20 stage IV melanoma patients and five healthy donors (HD) was collected in EDTA, Streck, and Transfix tubes. Peripheral blood mononuclear cell fraction was used for CTC analysis, whereas plasma and EV fractions were used for ctDNA mutation and miRNA analysis. Mutations in cell-free circulating DNA were detected in 67% of patients, with no significant difference between the tubes. CTC was detected in only EDTA blood and only in 15% of patients. miRNA NGS (nextgeneration sequencing) results were highly influenced by the collection tubes and could only be performed from EDTA and Streck tubes due to hemolysis in Transfix tubes. No overlap of significantly differentially expressed miRNA (patients versus HD) could be found between the tubes in total plasma, whereas eight miRNA were commonly differentially regulated in the EV fraction. In summary, high-quality CTCs, ctDNA, and miRNA data from a single blood tube can be obtained.
Background Revealing molecular mechanisms linked to androgen receptor activity can help to improve diagnosis and treatment of prostate cancer. Retinoic acid-induced 2 (RAI2) protein is thought to act as a transcriptional coregulator involved in hormonal responses and epithelial differentiation. We evaluated the clinical relevance and biological function of the RAI2 protein in prostate cancer. Methods We assessed RAI2 gene expression in the Cancer Genome Atlas prostate adenocarcinoma PanCancer cohort and protein expression in primary tumors (n = 199) by immunohistochemistry. We studied RAI2 gene expression as part of a multimarker panel in an enriched circulating tumor cell population isolated from blood samples (n = 38) of patients with metastatic prostate cancer. In prostate cancer cell lines, we analyzed the consequences of androgen receptor inhibition on RAI2 protein expression and the consequences of RAI2 depletion on the expression of the androgen receptor and selected target genes. Results Abundance of the RAI2 protein in adenocarcinomas correlated with the androgen receptor; keratins 8, 18, and 19; and E-cadherin as well as with an early biochemical recurrence. In circulating tumor cells, detection of RAI2 mRNA significantly correlated with gene expression of FOLH1, KLK3, RAI2, AR, and AR-V7. In VCaP and LNCaP cell lines, sustained inhibition of hormone receptor activity induced the RAI2 protein, whereas RAI2 depletion augmented the expression of MME, STEAP4, and WIPI1. Conclusions The RAI2 protein functions as a transcriptional coregulator of the androgen response in prostate cancer cells. Detection of RAI2 gene expression in blood samples from patients with metastatic prostate cancer indicated the presence of circulating tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.