Applied research is crucial in pushing the boundaries and finding a solution to the age-old problem of dog-mediated rabies. Although oral vaccination of dogs is considered to have great potential in mass dog vaccination campaigns and could have far-reaching benefits, it is perhaps the most ignored of all available tools in efforts to eliminate dog-mediated rabies, not least because of limited data on immunogenicity, efficacy, and safety of potential oral rabies vaccine candidates. In this study, the long-term immunogenicity in local Thai dogs after oral administration of the highly attenuated 3rd generation rabies virus vaccine strain SPBN GASGAS was assessed. The oral rabies vaccine was administered to dogs by either direct oral administration (n = 10) or by offering a vaccine loaded intestine bait (n = 15). The humoral immune response was then compared to three groups of dogs; a group that received a parenteral delivered inactivated rabies vaccine (n = 10), a group offered a placebo intestine bait (n = 7), and a control group (n = 4) for an observation period of 365 days. There was no significant difference in the immune response of dogs that received oral and parenteral vaccine in terms of magnitude, kinetics, and persistence of both rabies virus (RABV) neutralizing (RFFIT) and binding (ELISA) antibodies. Although the single parenteral injection of an inactivated rabies vaccine mounted a slightly higher humoral immune response than the orally delivered live vaccine, RABV specific antibodies of both types were still detectable after one year in most animals for all treatment groups and resulted in no difference in seropositivity. Characterization of rabies specific antibodies revealed two main classes of antibodies involved in the immune response of dogs vaccinated. While IgM antibodies were the first to appear, the succeeding IgG response was mainly IgG2 dominated independent of the vaccine type used. The results support the view that SPBN GASGAS induces a sustained detectable immune response in local dogs both after direct oral administration and via bait application.
: To evaluate the long-term immunogenicity of the live-attenuated, oral rabies vaccine SPBN GASGAS in a full good clinical practice (GCP) compliant study, forty-six (46) healthy, seronegative red foxes (Vulpes vulpes) were allocated to two treatment groups: group 1 (n = 31) received a vaccine bait containing 1.7 ml of the vaccine of minimum potency (106.6 FFU/mL) and group 2 (n = 15) received a placebo-bait. In total, 29 animals of group 1 and 14 animals of group 2 were challenged at 12 months post-vaccination with a fox rabies virus isolate (103.0 MICLD50/mL). While 90% of the animals offered a vaccine bait resisted the challenge, only one animal (7%) of the controls survived. All animals that had seroconverted following vaccination survived the challenge infection at 12 months post-vaccination. Rabies specific antibodies could be detected as early as 14 days post-vaccination. Based on the kinetics of the antibody response to SPBN GASGAS as measured in ELISA and RFFIT, the animals maintained stable antibody titres during the 12-month pre-challenge observation period at a high level. The results indicate that successful vaccination using the oral route with this new rabies virus vaccine strain confers long-term duration of immunity beyond one year, meeting the same requirements as for licensure as laid down by the European Pharmacopoeia.
The live genetically-engineered oral rabies virus (RABV) variant SPBN GASGAS induces long-lasting immunity in foxes and protection against challenge with an otherwise lethal dose of RABV field strains both after experimental oral and parenteral routes of administration. Induction of RABV-specific binding antibodies and immunoglobulin isotypes (IgM, total IgG, IgG1, IgG2) were comparable in orally and parenterally vaccinated foxes. Differences were only observed in the induction of virus-neutralizing (VNA) titers, which were significantly higher in the parenterally vaccinated group. The dynamics of rabies-specific antibodies pre- and post-challenge (365 days post vaccination) suggest the predominance of type-1 immunity protection of SPBN GASGAS. Independent of the route of administration, in the absence of IgG1 the immune response to SPBN GAGAS was mainly IgG2 driven. Interestingly, vaccination with SPBN GASGAS does not cause significant differences in inducible IFN-γ production in vaccinated animals, indicating a relatively weak cellular immune response during challenge. Notably, the parenteral application of SPBN GASGAS did not induce any adverse side effects in foxes, thus supporting safety studies of this oral rabies vaccine in various species.
(1) Background: The oral vaccination of free-roaming dogs against rabies has been developed as a promising complementary tool for mass dog vaccination. However, no oral rabies vaccine has provided efficacy data in dogs according to international standards. (2) Methods: To test the immunogenicity and efficacy of the third-generation oral rabies virus vaccine strain, SPBN GASGAS, in domestic dogs, dogs were offered an egg-flavoured bait containing 3.0 mL of the vaccine (107.5 FFU/mL) or a placebo egg-flavoured bait. Subsequently, these 25 vaccinated and 10 control animals were challenged approximately 6 months later with a dog rabies virus isolate. Blood samples were collected at different time points postvaccination and examined by ELISA and RFFIT. (3) Results: All but 1 of the 25 vaccinated dogs survived the challenge infection; meanwhile, all 10 control dogs succumbed to rabies. The serology results showed that all 25 vaccinated dogs seroconverted in ELISA (>40% PB); meanwhile, only 13 of the 25 vaccinated dogs tested seropositive ≥ 0.5 IU/mL) in RFFIT. (4) Conclusions: The SPBN GASGAS rabies virus vaccine meets the efficacy requirements for live oral rabies vaccines as laid down by the European Pharmacopoeia and the WOAH Terrestrial Manual. SPBN GASGAS already fulfilled the safety requirements for oral rabies vaccines targeted at dogs. Hence, the egg-flavoured bait containing SPBN GASGAS is the first oral vaccine bait that complies with WOAH recommendations for the intended use of oral vaccination of free-roaming dogs against rabies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.