BackgroundYersinia enterocolitica strains responsible for mild gastroenteritis in humans are very diverse with respect to their metabolic and virulence properties. Strain W22703 (biotype 2, serotype O:9) was recently identified to possess nematocidal and insecticidal activity. To better understand the relationship between pathogenicity towards insects and humans, we compared the W22703 genome with that of the highly pathogenic strain 8081 (biotype1B; serotype O:8), the only Y. enterocolitica strain sequenced so far.ResultsWe used whole-genome shotgun data to assemble, annotate and analyse the sequence of strain W22703. Numerous factors assumed to contribute to enteric survival and pathogenesis, among them osmoregulated periplasmic glucan, hydrogenases, cobalamin-dependent pathways, iron uptake systems and the Yersinia genome island 1 (YGI-1) involved in tight adherence were identified to be common to the 8081 and W22703 genomes. However, sets of ~550 genes revealed to be specific for each of them in comparison to the other strain. The plasticity zone (PZ) of 142 kb in the W22703 genome carries an ancient flagellar cluster Flg-2 of ~40 kb, but it lacks the pathogenicity island YAPIYe, the secretion system ysa and yts1, and other virulence determinants of the 8081 PZ. Its composition underlines the prominent variability of this genome region and demonstrates its contribution to the higher pathogenicity of biotype 1B strains with respect to W22703. A novel type three secretion system of mosaic structure was found in the genome of W22703 that is absent in the sequenced strains of the human pathogenic Yersinia species, but conserved in the genomes of the apathogenic species. We identified several regions of differences in W22703 that mainly code for transporters, regulators, metabolic pathways, and defence factors.ConclusionThe W22703 sequence analysis revealed a genome composition distinct from other pathogenic Yersinia enterocolitica strains, thus contributing novel data to the Y. enterocolitica pan-genome. This study also sheds further light on the strategies of this pathogen to cope with its environments.
Dioecy in angiosperms is often associated with sexual dimorphism in floral traits other than the sexual organs. Species of the neotropical orchid genus Catasetum produce unisexual flowers characterized by a remarkable morphological sexual dimorphism. Catasetum species emit strong floral perfumes that act as both signal and reward for male euglossine bee pollinators. Although the role of floral perfumes of Catasetum in attracting euglossine pollinators is well investigated, little is known about whether perfumes differ between floral sexes and, if they do, whether this chemical dimorphism influences the pollination ecology of the plants. Taking Catasetum arietinum as a model species, our aim was to observe the behaviour of pollinators on male and female flowers and to compare scent properties (i.e. chemical composition, total amount and temporal fluctuation) of male and female flowers. Floral scent samples were collected by using dynamic headspace methods and were analysed via gas chromatography coupled with mass spectroscopy (GC-MS). Catasetum arietinum is pollinated by males of two Euglossa species (i.e. E. nanomelanotricha and E. securigera). Bees approached male and female inflorescences of C. arietinum in similar proportions but landed significantly more often and spent more time on female flowers, which emitted more scent than male flowers. Furthermore, the amount of scent emitted varied across the different times of sampling, corresponding to the pattern of the diel foraging activity of pollinating bees on male and female flowers. The chemical composition of scents differed significantly between sexes. The two major compounds (Z)-methyl-p-methoxycinnamate and (E)-geranyl geraniol contributed most to this difference. This is the first case of sexual dimorphism reported in orchid floral perfumes. We discuss the influence of sex-specific floral scents on the behaviour of euglossine pollinators and offer new insights into the ecological and evolutionary significance of divergence in floral scents among dioecious plants.
Male euglossine bees exhibit unique adaptations for the acquisition and accumulation of chemical compounds from “perfume flowers” and other sources. During courtship display, male bees expose perfume mixtures, presumably to convey species-specific recognition and/or mate choice signals to females. Because olfaction regulates both signal production (in males) and signal detection (in females) in this communication system, strong selective pressures are expected to act on the olfactory system, which could lead to sensory specialization in favor of an increased sensitivity to specific chemical compounds. The floral scents of euglossine-pollinated plants are hypothesized to have evolved in response to the preexisting sensory biases of their male euglossine bee pollinators. However, this has never been investigated at the peripheral olfactory circuitry of distinct pollinating genera. Here, we present a comparative analysis using electroantennography (EAG) of males across the phylogeny of 29 euglossine bee species, among them Euglossa and Eulaema species. First, we tested whether antennal responses differ among different euglossine genera, subgenera and species. Secondly, we conducted a comparative phylogenetic analysis to investigate the macroevolutionary patterns of antennal responses across the euglossine bee phylogeny. We found that antennal response profiles are very unique on the species level and differ on the subgenus and the genus level. The differences can be explained by chemical compounds typically found in the floral scent bouquets of perfume flowers and specific compounds of species either pollinated by Euglossa (e.g., ipsdienol) or Eulaema bees (e.g., (−)-(E)-carvone epoxide). Also, we detected a phylogenetic signal in mean antennal responses and found that especially at the species level of our simulation the overall antennal responses exhibit greater disparity relative to a null model of pure Brownian-motion across the phylogeny. Altogether, our results suggest that (1) euglossine bee species exhibit species-specific antennal responses that differ among euglossine genera and subgenera, (2) antennal responses diverge early after speciation events, and (3) scent composition of perfume flowers evolved in response to pollinator-mediated selection imposed by preexisting sensory biases in euglossine bees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.