To establish the odor profiles of three differently fabricated commercial Swiss Tilsit cheeses, analyses were conducted using headspace solid-phase microextraction gas chromatography-mass spectrometry/pulsed flame photometric detection and gas chromatography-olfactometry to identify and quantitate volatile compounds. In addition, odor quality and the impact of target sulfur compounds on the overall odor of the cheeses were investigated. The odor profile was found to be mainly influenced by buttery-cheesy and sulfury odor notes in all cheeses. Buttery-cheesy odor notes were attributed to three main molecules: butanoic acid, 3-methylbutanoic acid, and butane-2,3-dione. Over a dozen volatile sulfur compounds were detected at parts per billion levels, but only a few influenced the odor profile of the cheeses: methanethiol, dimethyl disulfide, bis(methylthio)methane, dimethyl trisulfide, 3-(methylthio)propanal, and 2-methyltetrahydrothiophen-3-one (tentative). In conclusion, the conducted analyses allowed differentiation of the cheeses, and gas chromatography-olfactometry results confirmed that partially thermized milk cheese has a more intense and more multifaceted overall flavor.
New, odorant nitrogen- and sulfur-containing compounds are identified in cress extracts. Cress belongs to the botanical order Brassicales and produces glucosinolates, which are important precursors of nitrogen- and sulfur-containing compounds. Those compounds often present low perception thresholds and various olfactive notes and are thus of interest to the flavor and fragrance chemistry. When the study of organonitrogen and organosulfur compounds is undertaken, Brassicale extracts are one of the matrices of choice. Cress extracts were studied by analytical (GC-MS, GC-FPD) and chemical (fractionation) means to identify new interesting odorant compounds. Two compounds that have never been reported in cress extracts, containing both nitrogen and sulfur, were discovered: N-benzyl O-ethyl thiocarbamate and N-phenethyl O-ethyl thiocarbamate. These two molecules being of organoleptic interest, their homologues were synthesized and submitted to organoleptic tests (static and GC-sniffing). Their odors evolve from garlic and onion over green, mushroom- and cress-like to fresh, spearmint-like. This paper presents the origin, chemical synthesis, and organoleptic properties of a series of O-alkyl thiocarbamates.
Indian cress (Tropaeolum majus L.) absolute was studied by GC-olfactometry (VIDEO-Sniff method) in order to identify odor-active aroma compounds. Because of its fruity-sulfury odor note, a compound that has never been identified in plant extracts before stood out: O,S-diethyl thiocarbonate, present at 0.1% (percentage of the total GC/FID area) in the extract. GCxGC-TOFMS allowed for a clean mass spectrum to be obtained, and isolation by preparative GC followed by NMR studies allowed its identification. Here, we report on the first detection of O,S-diethyl thiocarbonate in Indian cress absolute by GC-olfactometry/VIDEO-Sniff and on its isolation and identification. The synthesis and odor evaluation of its homologues are presented.
Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.