SummaryBiotic and abiotic stress responses of plants are linked to developmental programs. Proteins involved in different signaling pathways are the molecular basis of this concerted interplay. In our study, we show that Arabidopsis thaliana HEAVY METAL-ASSOCIATED ISOPRENYLAT-ED PLANT PROTEIN3 (HIPP3; At5g60800) acts as an upstream regulator of stress-and development-related regulatory networks.Localization, metal-binding and stress-responsive gene expression of HIPP3 were analyzed via microscopy, protein and inductively coupled plasma (ICP)-MS analyses and quantitative real-time PCR. In addition, transcriptome and phenotype analyses of plants overexpressing HIPP3 were used to unravel its function.Our data show that HIPP3 is a nuclear, zinc-binding protein. It is repressed during drought stress and abscisic acid (ABA) treatment and, similar to other pathogen-related genes, is induced after infection with Pseudomonas syringae pv. tomato. HIPP3 overexpression affects the regulation of > 400 genes. Strikingly, most of these genes are involved in pathogen response, especially in the salicylate pathway. In addition, many genes of abiotic stress responses and seed and flower development are affected by HIPP3 overexpression. Plants overexpressing HIPP3 show delayed flowering.We conclude that HIPP3 acts via its bound zinc as an upstream regulator of the salicylatedependent pathway of pathogen response and is also involved in abiotic stress responses and seed and flower development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.