The covalent linking of acetylenes presents an important route for the fabrication of novel carbon-based scaffolds and two-dimensional materials distinct from graphene. To date few attempts have been reported to implement this strategy at well-defined interfaces or monolayer templates. Here we demonstrate through real space direct visualization and manipulation in combination with X-ray photoelectron spectroscopy and density functional theory calculations the Ag surface-mediated terminal alkyne C sp À H bond activation and concomitant homo-coupling in a process formally reminiscent of the classical Glaser-Hay type reaction. The alkyne homo-coupling takes place on the Ag(111) noble metal surface in ultrahigh vacuum under soft conditions in the absence of conventionally used transition metal catalysts and with volatile H 2 as the only by-product. With the employed multitopic ethynyl species, we demonstrate a hierarchic reaction pathway that affords discrete compounds or polymeric networks featuring a conjugated backbone. This presents a new approach towards on-surface covalent chemistry and the realization of two-dimensional carbon-rich or allcarbon polymers.
A permanent magnet retains a substantial fraction of its saturation magnetization in the absence of an external magnetic field. Realizing magnetic remanence in a single atom allows for storing and processing information in the smallest unit of matter. We show that individual holmium (Ho) atoms adsorbed on ultrathin MgO(100) layers on Ag(100) exhibit magnetic remanence up to a temperature of 30 kelvin and a relaxation time of 1500 seconds at 10 kelvin. This extraordinary stability is achieved by the realization of a symmetry-protected magnetic ground state and by decoupling the Ho spin from the underlying metal by a tunnel barrier.
The bonding and the temperature-driven metalation of 2H-Tetraphenylporphyrin (2H-TPP) on the Cu(111) surface under ultrahigh vacuum (UHV) conditions were investigated by a combination of X-ray photoelectron spectroscopy (XPS) and nearedge X-ray absorption fine structure (NEXAFS) spectroscopy with density functional theory (DFT) calculations. Thin films were prepared by organic molecular beam epitaxy and subsequent annealing. Our systematic study provides an understanding of the changes of the spectroscopic signature during adsorption and metalation. Specifically, we achieved a detailed peak assignment of the 2H-TPP multilayer data of
metal electrode. We use nonmagnetic, insulating MgO, wellknown in inorganic spintronic applications, [ 17,18 ] which allows to control the electron tunneling rate over many orders of magnitude. [ 19 ] Moreover, we employ the TbPc 2 SMM [ 14,15,[20][21][22][23] as a model system. In the neutral molecule, the Tb(III) ion exhibits an electronic spin state of J = 6. It is sandwiched between two phthalocyanine (Pc) macrocycles (cf. schematic view in Figure 1 a) hosting an unpaired electron delocalized over the Pc ligands. The easy-axis-type magnetic anisotropy imposes an energy barrier of ≈65 meV for magnetization reversal, [ 23 ] which is largest within the whole series of lanthanide-Pc 2 SMMs. [ 14,15 ] On nonmagnetic conducting substrates, only vanishing remanence [6][7][8][9][10] and very narrow hysteresis loops [6][7][8][9] were observed, much smaller than in bulk measurements, [ 20 ] illustrating the disruptive effects of the surface. We note that the adsorption of TbPc 2 on (anti)ferromagnetic materials represents a different situation because of the magnetic exchange interaction with the substrate. [ 24,25 ] In those cases, the SMMs were not shown to exhibit slow relaxation of magnetization. Rather, the hysteresis is linked to the one of the magnetic substrates, i.e., it is not an intrinsic property of the SMMs. Overall, the detailed knowledge on TbPc 2 makes it an ideal candidate to test if a tunnel barrier can boost the magnetic properties of surface-adsorbed SMMs. In this communication we show that the magnetic remanence and hysteresis opening obtained with TbPc 2 on MgO tunnel barriers outperform the ones of any other surface-adsorbed SMM [4][5][6][7][8][9][10][11][12][13]26 ] as well as those of bulk samples of TbPc 2 . [ 20 ] The scanning tunneling microscopy (STM) images in Figure 1 b,c show that TbPc 2 self-assembles by forming perfectly ordered 2D islands on two monolayers (MLs) of MgO on Ag(100). In line with former results, the SMMs are adsorbed fl at on the surface (cf. discussion of our STM and X-ray linear dichroism (XLD) data below). [ 6,27 ] This excludes that the extraordinary magnetic properties observed in this study are due to upstanding molecules having their macrocycles perpendicular to the surface, which would lead to a reduced interaction of the Tb(III) ion with the surface. The high-resolution image in Figure 1 c reveals eight lobes per molecule, reminiscent of the staggered conformation of the two phthalocyanine ligands. [ 27 ] Islands with the identical molecular assembly are formed by TbPc 2 adsorbed directly onto Ag(100), as shown in the Supporting Information.The magnetic properties of the Tb(III) ions in the surfaceadsorbed SMMs are determined by X-ray magnetic circular dichroism (XMCD) measurements at the M 4,5 (3 d → 4 f ) edges of Tb. For sub-MLs of TbPc 2 on MgO we fi nd a strong remanence larger than 40% of the saturation magnetization sat M and Single-molecule magnets (SMMs) [ 1 ] are very promising for molecular spintronics [ 2 ] and quantum information processing, [...
We investigated the surface bonding and ordering of free-base porphine (2H-P), the parent compound of all porphyrins, on a smooth noble metal support. Our multitechnique investigation reveals a surprisingly rich and complex behavior, including intramolecular proton switching, repulsive intermolecular interactions, and density-driven phase transformations. For small concentrations, molecular-level observations using low-temperature scanning tunneling microscopy clearly show the operation of repulsive interactions between 2H-P molecules in direct contact with the employed Ag(111) surface, preventing the formation of islands. An increase of the molecular coverage results in a continuous decrease of the average intermolecular distance, correlated with multiple phase transformations: the system evolves from an isotropic, gas-like configuration via a fluid-like phase to a crystalline structure, which finally gives way to a disordered layer. Herein, considerable site-specific molecule-substrate interactions, favoring an exclusive adsorption on bridge positions of the Ag(111) lattice, play an important role. Accordingly, the 2D assembly of 2H-P/Ag(111) layers is dictated by the balance between adsorption energy maximization while retaining a single adsorption site counteracted by the repulsive molecule-molecule interactions. The long-range repulsion is associated with a charge redistribution at the 2H-P/Ag(111) interface comprising a partial filling of the lowest unoccupied molecular orbital, resulting in long-range electrostatic interactions between the adsorbates. Indeed, 2H-P molecules in the second layer that are electronically only weakly coupled to the Ag substrate show no repulsive behavior, but form dense-packed islands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.