Caryolanes are known as typical plant-derived sesquiterpenes. Here we describe the isolation and full structure elucidation of three caryolanes, bacaryolane A-C (1-3), that are produced by a bacterial endophyte (Streptomyces sp. JMRC:ST027706) of the mangrove plant Bruguiera gymnorrhiza. By 2D NMR, analysis of the first X-ray crystallographic data of a caryolane (bacaryolane C), CD spectroscopy, and comparison with data for plant-derived caryolanes, we rigorously established the absolute configuration of the bacaryolanes and related compounds from bacteria. Bacterial caryolanes appear as the mirror images of typical plant caryolanes. Apparently plant and bacteria harbor stereodivergent biosynthetic pathways, which may be used as metabolic signatures. The discovery of plant-like volatile terpenes in endophytes not only is an important addition to the bacterial terpenome but may also point to complex molecular interactions in the plant-microbe association.
Jagaricin is a lipopeptide produced by the bacterial mushroom pathogen Janthinobacterium agaricidamnosum, the causative agent of mushroom soft rot disease. Apart from causing lesions in mushrooms, jagaricin is a potent antifungal active against human-pathogenic fungi. We show that jagaricin acts by impairing membrane integrity, resulting in a rapid flux of ions, including Ca2+, into susceptible target cells. Accordingly, the calcineurin pathway is required for jagaricin tolerance in the fungal pathogen Candida albicans. Transcriptional profiling of pathogenic yeasts further revealed that jagaricin triggers cell wall strengthening, general shutdown of membrane potential-driven transport, and the upregulation of lipid transporters, linking cell envelope integrity to jagaricin action and resistance. Whereas jagaricin shows hemolytic effects, it exhibited either no or low plant toxicity at concentrations at which the growth of prevalent phytopathogenic fungi is inhibited. Therefore, jagaricin may have potential for agricultural applications. The action of jagaricin as a membrane-disrupting antifungal is promising but would require modifications for use in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.