Over the last decade, Raman spectroscopy has gained more and more interest in research as well as in clinical laboratories. As a vibrational spectroscopy technique, it is complementary to the also well-established infrared spectroscopy. Through specific spectral patterns, substances can be identified and molecular changes can be observed with high specificity. Because of a high spatial resolution due to an excitation wavelength in the visible and near-infrared range, Raman spectroscopy combined with microscopy is very powerful for imaging biological samples. Individual cells can be imaged on the subcellular level. In vivo tissue examinations are becoming increasingly important for clinical applications. In this review, we present currently ongoing research in different fields of medical diagnostics involving linear Raman spectroscopy and imaging. We give a wide overview over applications for the detection of atherosclerosis, cancer, inflammatory diseases and pharmacology, with a focus on developments over the past 5 years. Conclusions drawn from Raman spectroscopy are often validated by standard methods, for example, histopathology or PCR. The future potential of Raman spectroscopy and its limitations are discussed in consideration of other non-linear Raman techniques.
Cellular senescence is a terminal cell cycle arrested state, assumed to be involved in tumor suppression. We studied four human fibroblast cell strains (BJ, MRC-5, IMR-90, and WI-38) from proliferation into senescence. Cells were investigated by label-free vibrational Raman and infrared spectroscopy, following their transition into replicative senescence. During the transition into senescence, we observed rather similar biomolecular abundances in all four cell strains and between proliferating and senescent cells; however, in the four aging cell strains, we found common molecular differences dominated by protein and lipid modifications. Hence, aging induces a change in the appearance of biomolecules (including degradation and storage of waste) rather than in their amount present in the cells. For all fibroblast strains combined, the partial least squares-linear discriminant analysis (PLS-LDA) model resulted in 75% and 81% accuracy for the Raman and infrared (IR) data, respectively. Within this validation, senescent cells were recognized with 93% sensitivity and 90% specificity for the Raman and 84% sensitivity and 97% specificity for the IR data. Thus, Raman and infrared spectroscopy can identify replicative senescence on the single cell level, suggesting that vibrational spectroscopy may be suitable for identifying and distinguishing different cellular states in vivo, e.g., in skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.