Psoriasis is a TH17-driven inflammatory disease affecting a significant proportion of the world population. The molecular consequences of IL-17 signaling in the skin are only partially understood. Therefore, we evaluated the IL-17A effects on organotypic 3-dimensional skin models and observed that IL-17A interfered with keratinocyte differentiation. In agreement with this phenotype, IL-17A repressed the expression of many genes encoding structural proteins. Moreover, genes encoding anti-microbial peptides were induced, resulting in a strengthening of the chemical barrier. Finally, we observed enhanced expression of the three IL-36 cytokines IL-36α, β and γ. We found that IL-36γ was secreted from keratinocytes in an inactive form and that neutrophilic proteases, including elastase, were capable of activating this cytokine. Functionally and similar to IL-17A, truncated IL-36 cytokines interfered with keratinocyte differentiation in 3D models. The molecular analysis revealed strong cooperative effects of IL-17A and IL-36 cytokines in regulating target genes, which was dependent on the proteolytic activation of the latter. Together these findings suggest an amplification cycle that can be initiated by IL-17A, involving IL-36 cytokines and immune cell derived proteases and resulting in active IL-36 cytokines which synergize with IL-17A. This amplification cycle might be relevant for a persistent psoriatic phenotype.
Molecular effects of various ablative and non-ablative laser treatments on human skin cells-especially primary effects on epidermal keratinocytes and dermal fibroblasts-are not yet fully understood. We present the first study addressing molecular effects of fractional non-sequential ultrapulsed CO laser treatment using a 3D skin model that allows standardized investigations of time-dependent molecular changes ex vivo. While histological examination was performed to assess morphological changes, we utilized gene expression profiling using microarray and qRT-PCR analyses to identify molecular effects of laser treatment. Irradiated models exhibited dose-dependent morphological changes resulting in an almost complete recovery of the epidermis 5 days after irradiation. On day 5 after laser injury with a laser fluence of 100 mJ/cm, gene array analysis identified an upregulation of genes associated with tissue remodeling and wound healing (e.g., COL12A1 and FGF7), genes that are involved in the immune response (e.g., CXCL12 and CCL8) as well as members of the heat shock protein family (e.g., HSPB3). On the other hand, we detected a downregulation of matrix metalloproteinases (e.g., MMP3), differentiation markers (e.g., LOR and S100A7), and the pro-inflammatory cytokine IL1α.Overall, our findings substantiate the understanding of time-dependent molecular changes after CO laser treatment. The utilized 3D skin model system proved to be a reliable, accurate, and reproducible tool to explore the effects of various laser settings both on skin morphology and gene expression during wound healing.
The response of the skin to harmful environmental agents is shaped decisively by the status of the immune system. Keratinocytes constitutively express and secrete the chemokine-like mediator, macrophage migration inhibitory factor (MIF), more strongly than dermal fibroblasts, thereby creating a MIF gradient in skin. By using global and epidermis-restricted Mif-knockout (Mif and K14-Cre; Mif) mice, we found that MIF both recruits and maintains antigen-presenting cells in the dermis/epidermis. The reduced presence of antigen-presenting cells in the absence of MIF was associated with accelerated and increased formation of nonmelanoma skin tumors during chemical carcinogenesis. Our results demonstrate that MIF is essential for maintaining innate immunity in skin. Loss of keratinocyte-derived MIF leads to a loss of control of epithelial skin tumor formation in chemical skin carcinogenesis, which highlights an unexpected tumor-suppressive activity of MIF in murine skin.-Brocks, T., Fedorchenko, O., Schliermann, N., Stein, A., Moll, U. M., Seegobin, S., Dewor, M., Hallek, M., Marquardt, Y., Fietkau, K., Heise, R., Huth, S., Pfister, H., Bernhagen, J., Bucala, R., Baron, J. M., Fingerle-Rowson, G. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin.
Tasisulam is a promising antitumor agent with complex pharmacology, which is used as an antiproliferative agent in patients with metastatic melanoma and other solid tumors. Phase 2 melanoma studies showed promising results but had to be stopped because of insufficient tasisulam clearance leading to toxic side effects. To reduce the negative effects of tasisulam, we synthesized a novel sulfonimidamide-based analog to evaluate its antiproliferative effects in comparison to the original compound by performing a cell proliferation assay in melanoma cell lines SKMel23 and A375. The results revealed that the analog had inhibitory effects on the proliferation comparable to tasisulam in both investigated cell lines. These results could contribute to a reduced toxicity of tasisulam and lead to further clinical trials in metastatic melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.