The concept of Reliability-Centred Maintenance (RCM) is applied to the two wind turbine models Vestas V44-600kW and V90-2MW. The executing RCM workgroup includes an owner and operator of the analyzed wind turbines, a maintenance service provider, a provider of condition-monitoring services and wind-turbine component supplier as well as researchers at academia. Combining the results of failure statistics and assessment of expert judgement, the analysis is focused on the most critical subsystems with respect to failure frequencies and consequences: the gearbox, the generator, the electrical system and the hydraulic system. The study provides the most relevant functional failures, reveals their causes and underlying mechanisms and identifies remedial measures to prevent either the failure itself or critical secondary damage. The study forms the basis for development of quantitative models for maintenance strategy selection and optimization, but may also provide a feedback of field experience for further improvement of wind-turbine design.
Fractions of methylated naphthenic acids (NAs) isolated from oil sands process-affected waterwere collected utilizing Kugelrohr distillation and analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy. 1H NMR analysis revealed that the ratio of methyl ester hydrogen atoms to remaining aliphatic hydrogen atoms increased from 0.130 to 0.214, from the lowest to the greatest molecular weight (MW) fractions, respectively, indicating that the carboxylic acid content increased with greater MW. Acute toxicity assays with exposure to monocarboxyl NA-like surrogates demonstrated that toxicity increased with increasing MW (D. magna LC50 values of 10 +/- 1.3 mM and 0.59 +/- 0.20 mM for the respective lowest and highest MW NA-like surrogates); however, with the addition of a second carboxylic acid moiety, the toxicity was significantly reduced (D. magna LC50 values of 10 +/- 1.3 mM and 27 +/- 2.2 mM forthe respective monocarboxyl and dicarboxyl NA-like surrogates of similar MW). Increased carboxylic acid content within NA structures of higher MW decreases hydrophobicity and, consequently, offers a plausible explanation as to why lower MW NAs in oil sands process-affected water are more toxic than the greater MW NAs.
In view of the frequent and costly failures of power converters in wind turbines, a large consortium of research institutes and companies has joined forces to investigate the underlying causes and key driving factors of the failures. This paper presents an exploratory statistical analysis of the comprehensive field data provided by the project partners. The evaluated dataset covers converter failures recorded from 2003-2017 during almost 7400 operating years of variable-speed wind turbines of different manufacturers and types, operating at onshore and offshore sites in 23 countries. The results include the distribution of failures within the converter system and the comparison of converter failure rates among turbines with different generator-converter concepts, from different manufacturers as well as from different turbine generations. By means of combined analyses of converter-failure data with operating and climate data, conditions promoting failure are identified. In line with the results of a previous, much smaller study of the authors, the present analysis provides further indications against the wide-spread assumption that thermalcycling induced fatigue is the lifetime-limiting mechanism in the power converters of wind turbines. Instead, the results suggest that humidity and condensation play an important role in the emergence of converter failures in this application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.