Small cell lung cancer (SCLC) represents 15% of lung cancers and is characterized by early dissemination, development of chemoresistance and a poor prognosis. A host of diverse drugs failed invariably and its mechanisms of global chemoresistance have not been characterized so far. SCLC represents the prototype of an aggressive and highly metastatic tumor which is ultimately refractory to any treatment. High numbers of circulating tumor cells (CTCs) allowed us to establish 5 CTC cell lines (BHGc7, 10, 16, 26 and UHGc5) from patients with recurrent SCLC. These cell lines exhibit the typical SCLC markers and CTCs of all patients developed spontaneously large multicellular aggregates, termed tumorospheres. Ki67 and carbonic anhydrase 9 (CAIX) staining of tumorosphere sections revealed quiescent and hypoxic cells, respectively. Accordingly, comparison of the chemosensitivity of CTC single cell suspensions with tumorospheres demonstrated increased resistance of the clusters against chemotherapeutics commonly used for treatment of SCLC. Therefore, global chemoresistance of relapsing SCLC seems to rely on formation of large tumorospheres which reveal limited accessibility, lower growth fraction and hypoxic conditions. Since similar tumor spheroids were found in other tumor types, SCLC seems to represent a unique tumor model to study the association of CTCs, metastasis and drug resistance.
Methyl mercury (MeHg) is an organic highly toxic compound that is transported efficiently via the human placenta. Our previous data suggest that MeHg is taken up into placental cells by amino acid transporters while mercury export from placental cells mainly involves ATP binding cassette (ABC) transporters. We hypothesized that the ABC transporter multidrug resistance-associated protein (MRP)1 (ABCC1) plays an essential role in mercury export from the human placenta. Transwell transport studies with MRP1-overexpressing Madin-Darby Canine Kidney (MDCK)II cells confirmed the function of MRP1 in polarized mercury efflux. Consistent with this, siRNA-mediated MRP1 gene knockdown in the human placental cell line HTR-8/SVneo resulted in intracellular mercury accumulation, which was associated with reduced cell viability, accompanied by increased cytotoxicity, apoptosis, and oxidative stress as determined via the glutathione (GSH) status. In addition, the many sources claiming different localization of MRP1 in the placenta required a re-evaluation of its localization in placental tissue sections by immunofluorescence microscopy using an MRP1-specific antibody that was validated in-house. Taken together, our results show that (1) MRP1 preferentially mediates apical-to-basolateral mercury transport in epithelial cells, (2) MRP1 regulates the GSH status of placental cells, (3) MRP1 function has a decisive influence on the viability of placental cells exposed to low MeHg concentrations, and (4) the in situ localization of MRP1 corresponds to mercury transport from maternal circulation to the placenta and fetus. We conclude that MRP1 protects placental cells from MeHg-induced oxidative stress by exporting the toxic metal and by maintaining the placental cells' GSH status in equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.