This review focuses on bacteria-fungi interactions mediated by secondary metabolites that occur in the environment and have implications for medicine and biotechnology. Bipartite interactions that affect agriculture as well as relationships involving additional partners (plants and animals) are discussed. The advantages of microbial interplay for food production and the risks regarding food safety are presented. Furthermore, recent developments in decoding the impact of bacteria-fungi interactions on infection processes and their implications for human health are highlighted. In addition, this reviews aims to demonstrate how the understanding of complex microbial interactions found in nature can be exploited for the discovery of new therapeutics.
Burkholderia terrae strain BS001, obtained as an inhabitant of the mycosphere of Laccaria proxima (a close relative of Lyophyllum sp. strain Karsten), actively interacts with Lyophyllum sp. strain Karsten. We here summarize the remarkable ecological behavior of B. terrae BS001 in the mycosphere and add key data to this. Moreover, we extensively analyze the approximately 11.5-Mb five-replicon genome of B. terrae BS001 and highlight its remarkable features. Seventy-nine regions of genomic plasticity (RGP), that is, 16.48% of the total genome size, were found. One 70.42-kb RGP, RGP76, revealed a typical conjugal element structure, including a full type 4 secretion system. Comparative analyses across 24 related Burkholderia genomes revealed that 95.66% of the total BS001 genome belongs to the variable part, whereas the remaining 4.34% constitutes the core genome. Genes for biofilm formation and several secretion systems, under which a type 3 secretion system (T3SS), were found, which is consistent with the hypothesis that T3SSs play a role in the interaction with Lyophyllum sp. strain Karsten. The high number of predicted metabolic pathways and membrane transporters suggested that strain BS001 can take up and utilize a range of sugars, amino acids and organic acids. In particular, a unique glycerol uptake system was found. The BS001 genome further contains genetic systems for the degradation of complex organic compounds. Moreover, gene clusters encoding nonribosomal peptide synthetases (NRPS) and hybrid polyketide synthases/NRPS were found, highlighting the potential role of secondary metabolites in the ecology of strain BS001. The patchwork of genetic features observed in the genome is consistent with the notion that 1) horizontal gene transfer is a main driver of B. terrae BS001 adaptation and 2) the organism is very flexible in its ecological behavior in soil.
Caught in the act: imaging mass spectrometry of a button mushroom infected with the soft rot pathogen Janthinobacterium agaricidamnosum in conjunction with genome mining revealed jagaricin as a highly antifungal virulence factor that is not produced under standard cultivation conditions. The structure of jagaricin was rigorously elucidated by a combination of physicochemical analyses, chemical derivatization, and bioinformatics.
Killing them softly. The molecular basis for the biosynthesis of tolaasin, the Pseudomonas tolaasii‐derived causative agent of mushroom (Agaricus bisporus) soft rot, was revealed by genome mining and analysis of the NRPS genes. Production of the toxic lipopeptides during infection was confirmed by imaging mass spectrometry.
Janthinobacterium agaricidamnosum causes soft-rot disease of the cultured button mushroom Agaricus bisporus and is thus responsible for agricultural losses. Here, we present the genome sequence of J. agaricidamnosum DSM 9628. The 5.9-Mb genome harbors several secondary metabolite biosynthesis gene clusters, which renders this neglected bacterium a promising source for genome mining approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.