The impact of Pt doping on the surface reactions between tin dioxide, water vapour, CO and H2 was investigated by a combination of simultaneously performed operando DRIFT (Diffuse Reflectance Infrared Fourier Transform) spectroscopy, DC resistance measurements and analysis of the reaction products by using a MS (Mass Spectrometer). Both undoped and Pt doped tin dioxide sensors were exposed to different test gases in synthetic air or in N2 backgrounds. The approach made it possible to identify the differences between the two materials with respect to their surface chemistry and their impact on the gas sensing performance. The main finding is that the presence of Pt changes the reaction partners' nature for water vapour and H2 on the one hand, and CO on the other hand when the sensors are operated in air. In this way the cross interference effect of humidity, which is responsible for the loss of CO sensing performance for the sensors based on undoped SnO2, is reversed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.