A correlation between the height of metal self-diffusion barriers and the tendency towards dendrite growth in batteries is demonstrated.
While the Mo 6 S 8 chevrel phase is frequently used as cathode material in Mg-ion batteries, theoretical studies on this material are comparatively scarce. The particular structure of the Mo 6 S 8 phase, with rather loosely connected cluster entities, points to the important role of dispersion forces in this material. However, so far this aspect has been completely neglected in the discussion of Mo 6 S 8 as cathode material for mono-and multivalent-ion batteries. In this work we therefore have studied the impact of dispersion forces on stability and kinetics of Mo 6 S 8 intercalation compounds. For this purpose, a series of charge carriers (Li, Na, K, Mg, Ca, Zn, Al) has been investigated. Interestingly, dispersion forces are observed to only slightly affect the lattice spacing of the chevrel phase, nevertheless having a significant impact on insertion voltage and in particular on the charge carrier mobility in the material. Moreover, upon varying the charge carriers in the chevrel phase, their diffusion barriers are observed to scale linearly with the ion size, almost independent of the charge of the considered ions. This indicates a rather unique and geometry dominated diffusion mechanism in the chevrel phase. The consequences of these findings for the ion mobility in the chevrel phase will be carefully discussed.
While the Mo6S8 chevrel phase is frequently used as cathode material in Mg--ion batteries, theoretical studies on this material are comparatively scarce. The particular structure of the Mo6S8 phase, with rather loosely connected cluster entities, points to the important role of dispersion forces in this material. However, so far this aspect has been completely neglected in the discussion of Mo6S8 as cathode material for mono- and multivalent-ion batteries. In this work we therefore have studied the impact of dispersion forces on stability and kinetics of Mo6S8 intercalation compounds. For this purpose, a series of charge carriers (Li, Na, K, Mg, Ca, Zn, Al) has been investigated. Interestingly, dispersion forces are observed to only slightly affect the lattice spacing of the chevrel phase, nevertheless having a significant impact on insertion voltage and in particular on the charge carrier mobility in the material. Moreover, upon varying the charge carriers in the chevrel phase, their diffusion barriers are observed to scale linearly with the ion size, almost independent of the charge of the considered ions. This indicates a rather unique and geometry dominated diffusion mechanism in the chevrel phase. The consequences of these findings for the ion mobility in the chevrel phase will be carefully discussed.
Ion mobility in electrolytes and electrodes is an important performance parameter in electrochemical devices, particularly in batteries. In this review, we concentrate on the charge carrier mobility in crystalline battery materials where the diffusion basically corresponds to hopping processes between lattice sites. However, in spite of the seem- ing simplicity of the migration process in crystalline materials, the factors governing mobility in these materials are still debated. There are well-accepted factors contributing to the ion mobility such as the size and the charge of the ions, but they are not sufficient to yield a complete picture of ion mobility. In this review, we will critically discuss possible factors influencing ion mobility in crystalline battery materials. To gain insights in these factors, we discuss chemical trends in batteries, both as far as the charge carriers as well as the host materials are concerned. Furthermore, we will also address fundamental questions, for example about the nature of the migrating charge carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.