Background: The pathological complete response (pCR) after neoadjuvant chemotherapy is a surrogate marker for a favorable prognosis in breast cancer patients. Factors capable of predicting a pCR, such as the proliferation marker Ki67, may therefore help improve our understanding of the drug response and its effect on the prognosis. This study investigated the predictive and prognostic value of Ki67 in patients with invasive breast cancer receiving neoadjuvant treatment for breast cancer. Methods: Ki67 was stained routinely from core biopsies in 552 patients directly after the fixation and embedding process. HER2/neu, estrogen and progesterone receptors, and grading were also assessed before treatment. These data were used to construct univariate and multivariate models for predicting pCR and prognosis. The tumors were also classified by molecular phenotype to identify subgroups in which predicting pCR and prognosis with Ki67 might be feasible. Results: Using a cut-off value of > 13% positively stained cancer cells, Ki67 was found to be an independent predictor for pCR (OR 3.5; 95% CI, 1.4, 10.1) and for overall survival (HR 8.1; 95% CI, 3.3 to 20.4) and distant diseasefree survival (HR 3.2; 95% CI, 1.8 to 5.9). The mean Ki67 value was 50.6 ± 23.4% in patients with pCR. Patients without a pCR had an average of 26.7 ± 22.9% positively stained cancer cells.
We evaluated whether a 76-locus polygenic risk score (PRS) and Breast Imaging Reporting and Data System (BI-RADS) breast density were independent risk factors within three studies (1643 case patients, 2397 control patients) using logistic regression models. We incorporated the PRS odds ratio (OR) into the Breast Cancer Surveillance Consortium (BCSC) risk-prediction model while accounting for its attributable risk and compared five-year absolute risk predictions between models using area under the curve (AUC) statistics. All statistical tests were two-sided. BI-RADS density and PRS were independent risk factors across all three studies (P interaction = .23). Relative to those with scattered fibroglandular densities and average PRS (2(nd) quartile), women with extreme density and highest quartile PRS had 2.7-fold (95% confidence interval [CI] = 1.74 to 4.12) increased risk, while those with low density and PRS had reduced risk (OR = 0.30, 95% CI = 0.18 to 0.51). PRS added independent information (P < .001) to the BCSC model and improved discriminatory accuracy from AUC = 0.66 to AUC = 0.69. Although the BCSC-PRS model was well calibrated in case-control data, independent cohort data are needed to test calibration in the general population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.