The intraoperative assessment of tumor margins of head and neck cancer is crucial for complete tumor resection and patient outcome. The current standard is to take tumor biopsies during surgery for frozen section analysis by a pathologist after H&E staining. This evaluation is time-consuming, subjective, methodologically limited and underlies a selection bias. Optical methods such as hyperspectral imaging (HSI) are therefore of high interest to overcome these limitations. We aimed to analyze the feasibility and accuracy of an intraoperative HSI assessment on unstained tissue sections taken from seven patients with oral squamous cell carcinoma. Afterwards, the tissue sections were subjected to standard histopathological processing and evaluation. We trained different machine learning models on the HSI data, including a supervised 3D convolutional neural network to perform tumor detection. The results were congruent with the histopathological annotations. Therefore, this approach enables the delineation of tumor margins with artificial HSI-based histopathological information during surgery with high speed and accuracy on par with traditional intraoperative tumor margin assessment (Accuracy: 0.76, Specificity: 0.89, Sensitivity: 0.48). With this, we introduce HSI in combination with ML hyperspectral imaging as a potential new tool for intraoperative tumor margin assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.