Weather and climate variations on subseasonal to decadal time scales can have enormous social, economic, and environmental impacts, making skillful predictions on these time scales a valuable tool for decision-makers. As such, there is a growing interest in the scientific, operational, and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) time scales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) time scales, while the focus broadly remains similar (e.g., on precipitation, surface and upper-ocean temperatures, and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal variability and externally forced variability such as anthropogenic warming in forecasts also becomes important. The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correction, calibration, and forecast quality assessment; model resolution; atmosphere–ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end-user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Programme (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis.
Seasonal prediction is one important element in a seamless prediction chain between weather forecasts and climate projections. After several years of development in collaboration with Universität Hamburg and Max Planck Institute for Meteorology, the Deutscher Wetterdienst performs operational seasonal forecasts since 2016 with the German Climate Forecast System, now in Version 2 (GCFS2.0). Here, the configuration of the previous system GCFS1.0 and the current GCFS2.0 are described and the performance of the two systems is compared over the common hindcast period of 1990–2014. In GCFS2.0, the forecast skill is improved compared to GCFS1.0 during boreal winter, especially for the Northern Hemisphere where the Pearson correlation has increased for the North Atlantic Oscillation index. Overall, a similar performance of GCFS2.0 in comparison to GCFS1.0 is assessed during the boreal summer. Future developments for climate forecasts need a stronger focus on the performance of interannual variability in a model system.
This essay stems from international conferences on subseasonal to seasonal and seasonal to decadal prediction jointly convened by WWRP and WCRP in September 2018 in Boulder, Colorado: (www .wcrp-climate.org/s2s-s2d-2018-home).
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.