The particle emissions from a commercial brake system utilizing copper-free pads have been characterized on a brake dynamometer under two real-world driving cycles. These included a novel cycle developed from analysis of the database of the World Harmonized Test Procedure (WLTP-Brake) and a short version of the Los Angeles City Traffic cycle (3h-LACT) developed in the framework of the European LowBraSys project. Disc temperature measurements using an array of embedded thermocouples revealed a large temporal and spatial non-uniformity with the radial temperature distribution depending also on the test procedure. Averaging over the duration of the cycle, it effectively reduced the influence of thermocouple positioning, allowing for more reliable quantification of the effectiveness of convective cooling. Particulate Matter (PM) emissions were similar for both cycles with PM2.5 averaging at 2.2 (±0.2) mg/km over the WLTP-Brake and 2.2 (±0.2) mg/km over the 3h-LACT, respectively. The corresponding PM10 emissions were 5.6 (±0.2) mg/km and 8.6 (±0.7) mg/km, respectively. The measurements revealed the formation of nanosized particles peaking at 10 nm, which were thermally stable at 350 °C under both cycles. Volatile nanoparticles were observed over the more demanding 3h-LACT cycle, with their emission rates decreasing with increasing the tunnel flow, suggesting nucleation of organic vapors released during braking as a potential formation process.
Particulate pollution caused by traffic is an important socio-political issue nowadays. In addition to the engines as a source of particulate matter, non-exhaust sources of vehicles like tyre, road abrasion and the brake are moving into focus due to the improved exhaust after-treatment and electrification. Although many studies have looked into brake particle number, mass and size distribution until now, the formation of this particles and their change within the frictional contact haven't been complete revealed. However, the understanding of these mechanisms is important. This knowledge can help, for example, to identify possible reduction potentials. In order to achieve a better understanding about the mechanisms that occur between the brake pad and the brake disc, tests are carried out on a tribological brake test rig. Using a borosilicate glass disc instead of a cast iron disc, allows optical in-situ measurements with a high-speed camera equipped with a magnification lens. The microscopic system is mounted on a linear bearing and can be moved stepwise in horizontal and vertical direction. Therefor sequential observation of the entire brake pad is feasible. In addition, 3-D images provide insights into the influence of the local structure of the pad. Besides, a newly developed sampling method will be used to remove wear mass from the system and analyze it chemically. This procedure can also be applied in combination with a grey cast iron disc, which allows further validation of the described glass method. By recording of the pad surface section by section, insights about the distribution of the brake particle movement within the tribological system can be gained. Hereby it can be analyzed, whether only the location on the pad influences the occurrence of particle motion or also other influencing variables exist. For instance, the presence of primary and secondary patches, as well as deposited wear mass and the surface morphology could be important. The 3-D images in combination with the chemical analysis can shed light on the mechanisms of wear mass deposition. Therefore this study shows new findings about brake particle behavior with regard to pad location, surface structure and chemical composition. In addition, the phenomenon of deposited mass is analyzed more precisely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.