This paper introduces an 1H NMR method to identify individual divalent metal cations Be2+, Mg2+, Ca2+, Sr2+, Zn2+, Cd2+, Hg2+, Sn2+, and Pb2+ in aqueous salt solutions through their unique signal shift and coupling after complexation with the salt of ethylenediaminetetraacetic acid (EDTA). Furthermore, quantitative determination applied for the divalent metal cations Ca2+, Mg2+, Hg2+, Sn2+, Pb2+, and Zn2+ (limit of quantification: 5–22 μg/ml) can be achieved using an excess of EDTA with aqueous model salt solutions. An internal standard is not required because a known excess of EDTA is added and the remaining free EDTA can be used to recalculate the quantity of chelated metal cations. The utility of the method is demonstrated for the analysis of divalent cations in some food supplements and in pharmaceutical products.
Photoreactive and thermoresponsive N-isopropylacrylamide (NIPAM)-surfmer copolymer hydrogels containing 4,4'-di(6-sulfato-hexyloxy)azobenzene (DSHA) dianions are described. The functional hydrogels are obtained in a two steps. First a micellar aqueous solution of (11-(acryloyloxy)undecyl)trimethylammonium bromide (AUTMAB) and NIPAM is exposed to (60) Co-gamma irradiation, and a thermoresponsive copolymer gel is obtained. Second, DSHA is included by shrinking the gel at 50 °C and subsequent reswelling in an aqueous solution of DSHA disodium salt at 20 °C. Reswelling is accompanied by electrostatic adsorption of DSHA dianions at the positively charged AUTMAB headgroups replacing the bromide ions. Gels containing trans-DSHA are transparent yellow at room temperature (λmax = 370 nm), while gels containing cis-rich DSHA are orange (λmax = 460 and 330 nm). Energy dispersive X-ray measurements indicate that 41% of the bromide ions are exchanged if trans-DSHA is used for adsorption, and only 7.5% if cis-DSHA is used. The incorporation of DSHA lowers the lower critical solution temperature (LCST) from 34 to 32 °C. Below the LCST, DSHA can be switched from the trans- to the cis-rich state and vice versa upon irradiation with UV (λ = 366 nm) or visible light (λ ≥ 450 nm). Above the LCST no photoreaction takes place.
Copolymer hydrogels composed of Nisopropylacrylamide (NIPAM), acrylic acid (AA) and the non-ionic surfactant monomer (surfmer) ω-methoxy poly(-ethylene oxide) 40 undecyl-α-methacrylate (PEO-R-MA-40) were prepared and studied with regard to swelling behaviour and drug release behaviour. The gels were prepared upon γ-irradiation of the corresponding aqueous comonomer solution in a one-step reaction. Transparent, stable hydrogels were obtained. Studies of light transmission indicate a dual pHand T-responsive behaviour, which originates from the AA and NIPAM content of the gels, respectively. Presence of large amounts of surfmer increases the phase transition temperature, but also increases the network density, which lowers the permeability of the gels. Swelling properties and release of ibuprofen (Ibu) were studied in simulated gastric fluid (SGF, pH 1) and phosphate buffer solution (PBS, pH 6.8). It was found that swelling and release are controlled by the nature and quantity of comonomers, pH, temperature and ionic strength of the aqueous phase. Swollen gels shrink in SGF and PBS, whereas dry gels exhibit a strong swelling both in SGF and PBS. Copolymer gels of AA and surfmer exhibit a strong, linear release of Ibu in SGF and PBS. If NIPAM is copolymerized in the gel, the drug release is decelerated in SGF probably due to formation of hydrogen bonds between NIPAM and Ibu at low pH. For example, a gel composed of 10 % (w/w) NIPAM, 1 % (w/w) AA and 1.5 % (w/w) surfmer exhibits a release of 10 % within 2 h in SGF and 58 % within 20 h in PBS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.