Abstract. Seit einigen Jahren gibt es zunehmend Studien, die, basierend auf der Untersuchung von fossilen Holzkohlen und Schneckenschalen aus Löss-Paläoboden Sequenzen, die traditionelle Vorstellung von weitestgehend baumlosen Steppen im Karpaten-Becken während der letzten Kaltzeit in Frage stellen. Mit unseren Arbeiten versuchen wir anhand von Biomarkern einen Beitrag zu dieser Diskussion zu leisten und herauszufinden, welches Potenzial in der Untersuchung von Alkan Biomarkern für die Rekonstruktion der Vegetationsgeschichte während der letzten glazialen Zyklen steckt. Kürzlich veröffentlichte erste Ergebnisse weisen darauf hin, dass der Degradationsgrad der pflanzenbürtigen organischen Substanz einen starken Einfluss auf das Alkanmuster in Böden hat und dass der in der Literatur häufig verwendete Alkanquotient nC31/nC27 kein reiner Vegetations-Proxy ist, sondern auch maßgeblich die unterschiedliche Degradation widerspiegelt. In der vorliegenden Arbeit führen wir daher erstmals einen End Member Modellierungsansatz ein, bei dem der Degradationsgrad der organischen Bodensubstanz mit berücksichtig wird. Das Modell wird auf die Loess-Paläoboden Sequenz Crvenka auf dem Bačka Loess Plateau (Serbien) zwischen Donau und Theiss angewendet. Die so für den letzten Interglazial-Glazial-Zyklus rekonstruierte Vegetationsgeschichte bestätigt die Holzkohle- und Mollusken-Befunde und deutet auf Gras-Steppen während des letzten Interglazials und -stadials hin (Marine Isotopenstadien (MIS) 5 bzw. 3). Die Ergebnisse machen deutlich, dass Steppen während des gesamten letzten glazialen Zyklus vorgeherrscht haben. Für das letzte Interglazial und das Interstadial der Marinen Isotopen Stufe (MIS) 3 deuten die Biomarker Befunde auf reine Grassteppen hin. Dagegen prägten in den Glazialen vermutlich auch vereinzelte Bäume das Landschaftsbild einer ‚Taiga-Steppe’. Die so rekonstruierte Vegetationsgeschichte steht im Einklang mit den Holzkohle- und Schneckenfunden, wie auch mit Ergebnissen von Klima- und Biom-Modellierungen.
During the last decade, compound-specific hydrogen isotope analysis of plant leaf-wax and sedimentary n-alkyl lipids has become a promising tool for paleohydrological reconstructions. However, with the exception of several previous studies, there is a lack of knowledge regarding possible effects of early diagenesis on the dD values of n-alkanes. We therefore investigated the n-alkane patterns and dD values of long-chain n-alkanes from three different C3 higher plant species (Acer pseudoplatanus L., Fagus sylvatica L. and Sorbus aucuparia L.) that have been degraded in a field leaf litterbag experiment for 27 months. We found that after an initial increase of long-chain n-alkane masses (up to not, vert, similar50%), decomposition took place with mean turnover times of 11.7 months. Intermittently, the masses of mid-chain n-alkanes increased significantly during periods of highest total mass losses. Furthermore, initially high odd-over-even predominances (OEP) declined and long-chain n-alkane ratios like n-C31/C27 and n-C31/C29 started to converge to the value of 1. While bulk leaf litter became systematically D-enriched especially during summer seasons (by not, vert, similar8‰ on average over 27 months), the dD values of long-chain n-alkanes reveal no systematic overall shifts, but seasonal variations of up to 25‰ (Fagus, n-C27, average not, vert, similar13‰). Although a partly contribution by leaf-wax n-alkanes by throughfall cannot be excluded, these findings suggest that a microbial n-alkane pool sensitive to seasonal variations of soil water dD rapidly builds up. We propose a conceptual model based on an isotope mass balance calculation that accounts for the decomposition of plant-derived n-alkanes and the build-up of microbial n-alkanes. Model results are in good agreement with measured n-alkane dD results. Since microbial ‘contamination’ is not necessarily discernible from n-alkane concentration patterns alone, care may have to be taken not to over-interpret dD values of sedimentary n-alkanes. Furthermore, since leaf-water is generally D-enriched compared to soil and lake waters, soil and water microbial n-alkane pools may help explain why soil and sediment n-alkanes are D-depleted compared to leaves
A positive plant diversity to plant aboveground productivity relation has been shown to alter carbon and nitrogen fluxes in soils. Thus, most investigations focussed on the C-and N-input via litter fall, widely neglecting the importance of root exudation. As microbes, which are known to be important drivers of matter fluxes in soil, feed on these root exudates, increased knowledge on the availability of these compounds in soil might help to understand biodiversity effects on soil. We therefore investigated the effect of plant diversity on size and composition of the free soil amino acid pool in a grassland experiment, as amino acids are an important C-as well as N-source for microbes. Despite a positive diversity effect on plant productivity, we only found an insignificant increase of the size of the free amino acid pool in soil. This was most likely caused by an increase of the microbial population and thus an increased amino acid mineralization. At the same time the composition of the amino acid pool changed significantly between plant diversity levels. This most likely reflects differences in plant input as well as differences in microbial mineralization and enabled us to separate diversity levels by means of discriminant analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.