Reaction of copper(II) acetate with azobenzene-4,4′-dicarboxylic acid results in the formation of a metal–organic framework with the unexpected stoichiometry of Cu(II):ligand of 2:1. The bulk synthesis results in microspheres assembled from either nanobricks or nanoflakes, depending on the ratio of the reactants in solution. While the former behaves like a bulk solid with clear reflections in the X-ray and electron diffraction experiments, the latter obviously is dominated by surface effects, with a significant fraction of slightly expanded elemental cells and a significantly increased outer surface area. The material could also be deposited on a variety of surfaces using a stepwise layer-by-layer growth, permitting the observation of the changes in composition at each of the deposition steps. The orientation of the crystallites could be influenced by the choice of surface functionalities and their order. When the surfaces became chemically patterned, in this case by microcontact printing (μCP), the deposits could be localized, with the nucleation/growth rate being the determining factor for the preferred growth sites.
A series of short RNA duplexes containing one or two 1-ethynylpyrene-modified adenine bases was synthesised. The melting behaviour of these duplexes was examined by monitoring temperature-dependent pyrene fluorescence. In the singly modified RNA duplexes, the bases flanking the ethynylpyrene-rA were varied to examine the sequence specificity of the fluorescence change of pyrene upon RNA hybridisation. Because an increase in pyrene fluorescence upon melting of the duplex can be correlated with intercalation of pyrene, and a decrease is usually associated with the position of pyrene outside the strand, a relationship between the flanking bases and the tendency of the dye to intercalate has been established. It was found that pyrene intercalation is less likely to take place if the modified base is flanked only by A-U base pairs. Flanking G-C base pairs, even only in the 5'-direction of the modified base, will favour intercalation. In addition, we examined a doubly modified compound that had a pyrene located on each strand. The spectra indicated that the two pyrenes were close enough for interaction. Upon melting of the strand, a fluorescence blue shift corresponding to the dissociation of the pyrene-pyrene complex could be observed in addition to the intensity effect already known from the singly modified compounds. Two melting curves based on the different properties of the fluorophore could be extracted, leading to different melting points corresponding to the global duplex melting and to the change of local pyrene environment, respectively.
CO(2)-consuming reactions, in particular carboxylations, play important roles in technical processes and in nature. Their kinetic behavior and the reaction mechanisms of carboxylating enzymes are difficult to study because CO(2) is inconvenient to handle as a gas, exists in equilibrium with bicarbonate in aqueous solution, and typically yields products that show no significant spectroscopic differences from the reactants in the UV/Vis range. Here we demonstrate the utility of 3-nitrophenylacetic acid and related compounds (caged CO(2)) in conjunction with infrared spectroscopy as widely applicable tools for the investigation of such reactions, permitting convenient measurement of the kinetics of CO(2) consumption. The use of isotopically labeled caged CO(2) provides a tool for the assignment of infrared absorption bands, thus aiding insight into reaction intermediates and mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.