The efficient conjugation of a ruthenium complex and the peptide hormone somatostatin is presented. The resultant biohybrid offers valuable features for photodynamic therapy such as remarkable cellular selectivity, rapid cell uptake by receptor-mediated endocytosis, efficient generation of (1)O2 upon irradiation, potent phototoxicity as well as low cytotoxicity in the "off"-state.
A new ligand and its luminescent polypyridyl–RuII complex were synthesized and characterized. Both provide two azide functionalities in their periphery, which are electronically separated from the π‐system of the 2,2′‐bipyridine ligands by a methylene group. This azide‐functionalized ruthenium complex provides access to the formerly inaccessible substrate spectrum of alkynyl‐functionalized coupling substrates by using the copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC). Test CuAAC reactions were performed on the ligand and directly on the RuII complex by using phenylacetylene as a model substrate, and relatively high yields of the products were obtained under mild conditions. Transformation of the azide into the triazole had only minor influences on the photophysical properties of the polypyridyl–ruthenium core.
The photophysical properties of Ruthenium-bipyridine complexes bearing a bibenzimidazole ligand were investigated. The nitrogens on the bibenzimidazole-ligand were protected, by adding either a phenylene group or a 1,2-ethandiyl group, to remove the photophysical dependence of the complex on the protonation state of the bibenzimidazole ligand. This protection results in the bibenzimidazole ligand contributing to the MLCT transition, which is experimentally evidenced by (resonance) Raman scattering in concert with DFT calculations for a detailed mode assignment in the (resonance) Raman spectra.
The synthesis of a trisheteroleptic ruthenium complex [Ru(tb)(dppz)(tmbiH2 )][PF6 ]2 (tb=4,4'-di-tert-butyl-2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazin, tmbiH2 =5,6,5',6'-tetramethyl-2,2'-bibenzimidazole) is described. In addition, the structural characterisation by means of 1D, 2D (1) H NMR spectroscopy, and mass spectrometry, along with determination of the solid-state structure of the important precursor Ru(tb)(dppz)Cl2 , supports the proposed octahedral coordination geometry. The capability of tmbiH2 to form hydrogen bonds is corroborated by the solid-state structure. The photochemical characteristics of this complex can be described as a combination of the "light switch" effects, which are either attributed to the dppz or to the tmbiH2 ligand. To illustrate the molecule's double switchable features, steady-state absorption and emission measurements were performed, which include the determination of the quantum yield and the pKa values of the acidic protons of the tmbiH2 ligand. Notably, the emission lifetimes are sensitive to the solvents used. This phenomenon is due to a proton-coupled deactivation of the excited metal-to-ligand charge transfer (MLCT) state of the complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.