Homoarginine augments osteo-/chondrogenic transformation of VSMCs and vascular calcification, effects involving impaired NO formation from homoarginine.
Background/Aims: Excessive phosphate concentrations trigger vascular calcification, an active process promoted by osteoinduction of vascular smooth muscle cells (VSMCs) with increased expression and activity of transcription factor RUNX2 (Core-binding factor α1, CBFA1), alkaline phosphatase (ALPL), TGFß1, transcription factor NFAT5, and NFAT5-sensitive transcription factor SOX9. The osteoinductive signaling and vascular calcification of hyperphosphatemic klotho-hypomorphic mice could be reversed by treatment with NH4Cl, effects involving decrease of TGFß1 and inhibition of NFAT5-dependent osteoinductive signaling. Known effects of NH4Cl include alkalinization of acidic cellular compartments. The present study explored whether osteo-/chondrogenic signaling could be influenced by alkalinization of acidic cellular compartments following inhibition of the vacuolar H+ ATPase with bafilomycin A1 or following dissipation of the pH gradient across the membranes of acidic cellular compartments with methylamine. Methods: Primary human aortic smooth muscle cells (HAoSMCs) were treated with high phosphate to trigger osteo-/chondrogenic signaling and calcification in the absence or presence of bafilomycin A1 or methylamine. Calcium content was determined using a QuantiChrom Calcium assay, ALP activity by a colorimetric assay and transcript levels by quantitative RT-PCR. Results: High phosphate increased significantly the calcium deposition, CBFA1 and ALPL mRNA expression as well as alkaline phosphatase activity in HAoSMCs, all effects ameliorated by both, bafilomycin A1 and methylamine. High phosphate further significantly up-regulated the mRNA levels of TGFB1, NFAT5 and SOX9, effects significantly blunted by additional treatment with bafilomycin A1 or methylamine. Treatment of HAoSMCs with human TGFß1 protein or high phosphate up-regulated NFAT5, SOX9, CBFA1 and ALPL mRNA expression to similarly high levels which could not be further increased by combined treatment with high phosphate and TGFß1. Bafilomycin A1 failed to reverse the osteo-/chondrogenic signaling triggered by high phosphate together with TGFß1. Conclusions: Inhibition of the vacuolar H+ ATPase or dissipation of the pH gradient across the membranes of acidic cellular compartments both disrupt osteo-/chondrogenic signaling and calcium deposition in VSMCs, observations supporting the hypothesis that vascular calcification requires acidic cellular compartments.
Background/Aims: The serum- and glucocorticoid-inducible kinase SGK1 participates in the orchestration of cardiac hypertrophy and remodeling. Signaling linking SGK1 activity to cardiac remodeling is, however, incompletely understood. SGK1 phosphorylation targets include cyclin-dependent kinase inhibitor 1B (p27), a protein which suppresses cardiac hypertrophy. The present study explored how effects of SGK1 on nuclear p27 localization might modulate the hypertrophic response in cardiomyocytes. Methods: Experiments were performed in HL-1 cardiomyocytes and in SGK1-deficient (sgk1-/-) and corresponding wild-type (sgk1+/+) mice following pressure overload by transverse aortic constriction (TAC). Transcript levels were quantified by RT-PCR, protein abundance by Western blotting and protein localization by confocal microscopy. Results: In HL-1 cardiomyocytes, overexpression of constitutively active SGK1 (SGK1S422D) but not of inactive SGK1 (SGK1K127N) increased significantly the cell size and transcript levels encoding Acta1, a molecular marker of hypertrophy. Those effects were paralleled by almost complete relocation of p27 in the cytoplasm. Treatment of HL-1 cardiomyocytes with isoproterenol was followed by up-regulation of SGK1 expression. Moreover, isoproterenol treatment stimulated the hypertrophic response and was followed by disappearance of p27 from the nuclei, effects prevented by the SGK1 inhibitor EMD638683. The effect of SGK1S422D overexpression on Acta1 mRNA levels was disrupted by overexpression of p27 and of the p27T197A mutant lacking the SGK1 phosphorylation site, but not of the phosphomimetic p27T197D mutant. In sgk1+/+ mice, TAC increased significantly SGK1 and Acta1 mRNA levels and decreased the nuclear to cytoplasmic protein ratio of p27 in cardiac tissue, effects blunted in the sgk1-/- mice. Conclusion: SGK1-induced hypertrophy of cardiomyocytes involves p27 phosphorylation at T197, which fosters cytoplasmic p27 localization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.