The immediate-early gene Arc (activity-regulated cytoskeleton-associated protein) is provocative in the context of neuroplasticity because of its experience-dependent regulation and mRNA transport to and translation at activated synapses. Normal rats have more preproenkephalin-negative (ppe-neg; presumed striatonigral) neurons with cytoplasmic Arc mRNA than ppe-positive (ppe-pos; striatopallidal) neurons, despite equivalent numbers of these neurons showing novelty-induced transcriptional activation of Arc. Furthermore, rats with partial monoamine loss induced by methamphetamine (METH) show impaired Arc mRNA expression in both ppe-neg and ppe-pos neurons relative to normal animals following response-reversal learning. In this study, Arc expression induced by exposure to a novel environment was used to assess transcriptional activation and cytoplasmic localization of Arc mRNA in striatal efferent neuron subpopulations subsequent to METH-induced neurotoxicity. Partial monoamine depletion significantly altered Arc expression. Specifically, basal Arc expression was elevated, but novelty-induced transcriptional activation was abolished. Without novelty-induced Arc transcription, METH-pretreated rats also had fewer neurons with cytoplasmic Arc mRNA expression, with the effect being greater for ppe-neg neurons. Thus, METH-induced neurotoxicity substantially alters striatal efferent neuron function at the level of Arc transcription, suggesting a long-term shift in basal ganglia neuroplasticity processes subsequent to METH-induced neurotoxicity. Such changes potentially underlie striatally-based learning deficits associated with METH-induced neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.