Subdividing proliferating tissues into compartments is an evolutionarily conserved strategy of animal development [1-6]. Signals across boundaries between compartments can result in local expression of secreted proteins organizing growth and patterning of tissues [1-6]. Sharp and straight interfaces between compartments are crucial for stabilizing the position of such organizers and therefore for precise implementation of body plans. Maintaining boundaries in proliferating tissues requires mechanisms to counteract cell rearrangements caused by cell division; however, the nature of such mechanisms remains unclear. Here we quantitatively analyzed cell morphology and the response to the laser ablation of cell bonds in the vicinity of the anteroposterior compartment boundary in developing Drosophila wings. We found that mechanical tension is approximately 2.5-fold increased on cell bonds along this compartment boundary as compared to the remaining tissue. Cell bond tension is decreased in the presence of Y-27632 [7], an inhibitor of Rho-kinase whose main effector is Myosin II [8]. Simulations using a vertex model [9] demonstrate that a 2.5-fold increase in local cell bond tension suffices to guide the rearrangement of cells after cell division to maintain compartment boundaries. Our results provide a physical mechanism in which the local increase in Myosin II-dependent cell bond tension directs cell sorting at compartment boundaries.
Local increase of cell bond tension along the boundary as well as global anisotropies in the tissue contribute to shaping boundaries in cell networks. We propose a simple scenario that combines time-dependent cell bond tension at the boundary, oriented cell division, and cell elongation in the tissue that can account for the main features of the dynamics of the shape of the dorsoventral compartment boundary.
xSyndecan4 (xSyn4), an essential component of focal adhesion (FA), is expressed in the dorsal mesoderm and neuroectoderm during gastrulation in Xenopus embryos. Biochemical and embryological experiments demonstrated that xSyn4 is required for proper gastrulation and interacts biochemically and functionally with Dsh and Fz7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.