Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo.
SummaryBackgroundThe epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy).MethodsWe combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8.FindingsWe included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy.InterpretationThis meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the ultimate aim of assisting in disease classification and prognosis. The data suggest that specific loci can act pleiotropically raising risk for epilepsy broadly, or can have effects limited to a specific epilepsy subtype. Future genetic analyses might benefit from both lumping (ie, grouping of epilepsy types together) or splitting (ie, analysis of specific clinical subtypes).FundingInternational League Against Epilepsy and multiple governmental and philanthropic agencies.
Summary Purpose Intracerebral vascular malformations including cavernous angiomas (CAs) and arteriovenous malformations (AVMs) are an important cause of chronic pharmacoresistant epilepsies. Little is known about the pathogenetic basis of epilepsy in patients with vascular malformations. Intracerebral deposits of iron-containing blood products have been generally regarded as responsible for the strong epileptogenic potential of CAs. Here, we have analyzed whether blood–brain barrier (BBB) dysfunction and subsequent astrocytic albumin uptake, recently described as critical trigger of focal epilepsy, represent pathogenetic factors in vascular lesion–associated epileptogenesis. Methods We examined the correlation between hemosiderin deposits, albumin accumulation, and several clinical characteristics in a series of 80 drug-refractory epilepsy patients with CAs or AVMs who underwent surgical resection. Analysis of clinical parameters included gender, age of seizure onset, epilepsy frequency, duration of epilepsy before surgery, and postoperative seizure outcome classification according to Engel class scale. Hemosiderin deposits in the adjacent brain tissue of the vascular lesion were semiquantitatively analyzed. Fluorescent double-immunohistochemistry using GFAP/albumin costaining was performed to study albumin extravasation. Key Findings Our results suggest that a shorter duration of preoperative epilepsy is correlated with significantly better postsurgical outcome (p < 0.05), whereas no additional clinical or neuropathologic parameter correlated significantly with the postsurgical seizure situation. Intriguingly, we observed strong albumin immunoreactivity within the vascular lesion and in perilesional astrocytes (57.65 ± 4.05%), but not in different control groups. Significance Our present data on albumin uptake in brain tissue adjacent to AVMs and CAs suggests BBB dysfunction and accumulation of albumin within astrocytes as a new pathologic feature potentially associated with the epileptogenic mechanism for vascular lesions and provides novel therapy perspectives for antiepileptogenesis in affected patients.
Our results suggest a differential correlation of key inflammatory factor expression in epileptic hippocampi and seizure frequency in patients. The modulation of such processes may open new therapeutic perspectives for treating seizures.
SUMMARYPartial deletions of the RBFOX1 gene encoding the neuronal splicing regulator have been reported in a range of neurodevelopmental diseases including idiopathic/genetic generalized epilepsy (IGE/GGE), childhood focal epilepsy, and self-limited childhood benign epilepsy with centrotemporal spikes (BECTS, rolandic epilepsy), and autism. The protein regulates alternative splicing of many neuronal transcripts involved in the homeostatic control of neuronal excitability. Herein, we examined whether structural deletions affecting RBFOX1 exons confer susceptibility to common forms of juvenile and adult focal epilepsy syndromes. We screened 807 unrelated patients with sporadic focal epilepsy, and we identified seven hemizygous exonic RBFOX1 deletions in patients with sporadic focal epilepsy (0.9%) in comparison to one deletion found in 1,502 controls. The phenotypes of the patients carrying RBFOX1 deletions comprise magnetic resonance imaging (MRI)-negative epilepsy of unknown etiology with frontal and temporal origin (n = 5) and two patients with temporal lobe epilepsy with hippocampal sclerosis. The epilepsies were largely pharmacoresistant but not associated with intellectual disability. Our study extends the phenotypic spectrum of RBFOX1 deletions as a risk factor for focal epilepsy and suggests that exonic RBFOX1 deletions are involved in the broad spectrum of focal and generalized epilepsies. KEY WORDS: Copy number variation, Idiopathic, Genetic, Cryptogenic, Magnet resonance imaging negative, Lesional.Structural genomic copy number variations (CNVs) account for a substantial fraction of the genetic predisposition in about 3% of patients with idiopathic epilepsies. 1 Likewise, exonic deletions of the RBFOX1 gene have been associated with a broad range of neurodevelopmental disorders including autism, generalized epilepsies, and self-limited childhood benign epilepsy with centrotemporal spikes (BECTS; or rolandic epilepsy) (for overview see Lal et al.1,2 ). The RBFOX1 protein regulates splicing and expression of many neuronal transcripts by binding the sequence (U)GCAUG to introns flanking the alternative splicing sites. It plays a key role in the control of neuronal excitation in the mammalian brain and influences susceptibility to epilepsy.4,5 Notably, brain-specific homozygous and heterozygous Rbfox1 knockouts in mice do not alter brain morphology but display spontaneous seizures and a dramatic epileptogenic response to kainic acid resulting in status epilepticus. 4 With regard to the increased frequency of exonic RBFOX1 deletions in patients with GGE syndromes and focal childhood epilepsies, the present study examined whether exonic RBFOX1 deletions also increase risk of sporadic forms of common focal epilepsy syndromes with juvenile or adult onset. Subjects and Methods PatientsA total of 807 unrelated and sporadic patients of selfreported European ancestry, diagnosed with focal epilepsy with an onset after the age of 15 gave their written informed consent to be included in the study. Of these, 434 had a ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.