The role of subclonal TP53 mutations, defined by a variant allele frequency of <20%, has not been addressed in acute myeloid leukemia yet. We, therefore, analyzed their prognostic value in a cohort of 1,537 patients with newly diagnosed disease, prospectively treated within three trials of the “German-Austrian Acute Myeloid Leukemia Study Group”. Mutational analysis was performed by targeted deep sequencing and patients with TP53 mutations were categorized by their variant allele frequency into groups with frequencies >40%, 20%-40% and <20%. A total of 108 TP53 mutations were found in 98 patients (6.4%). Among these, 61 patients had variant allele frequencies >40%, 19 had variant allele frequencies between 20%-40% and 18 had frequencies <20%. Compared to specimens with clonal TP53 mutations, those with subclonal ones showed significantly fewer complex karyotypes and chromosomal losses. In either TP53 -mutated group, patients experienced significantly fewer complete responses ( P <0.001) and had worse overall and event-free survival rates ( P <0.0001). In Cox regression analyses adjusting for age, white blood cell count, cytogenetic risk and type of acute myeloid leukemia, the adverse prognostic effect of TP53 mutations remained significant for all TP53 -mutated subgroups. These data suggest that subclonal TP53 mutations are a novel prognostic parameter in acute myeloid leukemia and emphasize the usefulness of next-generation sequencing technologies for risk stratification in this disorder. The study was registered at ClinicalTrials.gov with number NCT00146120.
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Since immune cells represent a large fraction of the TME, they play a key role in mediating pro- and anti-tumor immune responses. Immune escape, which suppresses anti-tumor immunity, enables tumor cells to maintain their proliferation and growth. Numerous mechanisms, which have been intensively studied in recent years, are involved in this process, and based on these findings, novel immunotherapies have been successfully developed. Here, we review the composition of the TME and the mechanisms by which immune evasive processes are regulated. In detail, we describe membrane-bound and soluble factors, their regulation, and their impact on immune cell activation in the TME. Furthermore, we give an overview of the tumor/antigen presentation and how it is influenced under malignant conditions. Finally, we summarize novel TME-targeting agents, which are already in clinical trials for different tumor entities.
Nuclear orphan receptor NR4A1 exerts an essential tumor suppressor function in aggressive lymphomas. In this study, we investigated the hypothesized contribution of the related NR4A family member NR4A3 to lymphomagenesis. In aggressive lymphoma patients, low expression of NR4A3 was associated with poor survival. Ectopic expression or pharmacological activation of NR4A3 in lymphoma cell lines led to a significantly higher proportion of apoptotic cells. In a mouse NSG xenograft model of lymphoma (stably transduced SuDHL4 cells), NR4A3 expression abrogated tumor growth, compared with vector control and uninduced cells that formed massive tumors. Transcript analysis of four different aggressive lymphoma cell lines overexpressing either NR4A3 or NR4A1 revealed that apoptosis was driven similarly by induction of BAK, Puma, BIK, BIM, BID, and Trail. Overall, our results showed that NR4A3 possesses robust tumor suppressor functions of similar impact to NR4A1 in aggressive lymphomas. .
Overexpression of bcl‐2 and c‐myc are defining features of double‐expressor‐lymphoma (DEL) but may also occur separately in patients with primary central nervous system lymphoma (PCNSL). Despite all progress in optimizing treatment regimen, there is lack of sufficient risk stratification models. Here, we first describe the relationship between DEL biology, the National Comprehensive Cancer Network International Prognostic Index (NCCN‐IPI), treatment response, disease progression, and mortality in PCNSL. In this study, we determined c‐myc and bcl‐2 status immunohistochemically in samples of 48 patients with newly diagnosed PCNSL and followed these patients for a median interval of 6.2 years. Twelve, 18, and 17 patients harbored none, one, or both DEL features. Corresponding overall response rates after first‐line therapy were strongly associated with DEL biology (100%, 42%, and 44% in patients with 0, 1, or 2 DEL features). Patients with one or both DEL features had a 5‐fold and 13‐fold higher 5‐year risk of progression and/or death than patients without DEL features. These associations prevailed after adjusting for the NCCN‐IPI. DEL improved the discriminatory capability of the NCCN‐IPI ( P = .0001). Furthermore, we could show that addition of DEL biology to the NCCN‐IPI significantly improved the score's discriminatory potential both toward progression‐free survival (increase in Harell's c = 0.15, P = .005) and overall survival (increase in Harell's c = 0.11, P = .029). In conclusion, DEL biology is a strong and simple‐to‐use predictor of adverse outcome in PCNSL. Addition of DEL to the NCCN‐IPI improves its prognostic potential. Disease progression from PCNSL harboring both DEL features is invariably fatal. This defines a novel PCNSL patient subset with a great unmet need for improved therapy.
Background:Blood-based parameters are gaining increasing interest as potential prognostic biomarkers in patients with diffuse large B-cell lymphoma (DLBCL). The aim of this study was to comprehensively evaluate the prognostic significance of pretreatment plasma uric acid levels in patients with newly diagnosed DLBCL.Methods:The clinical course of 539 DLBCL patients, diagnosed and treated between 2004 and 2013 at two Austrian high-volume centres with rituximab-based immunochemotherapy was evaluated retrospectively. The prognostic influence of uric acid on overall survival (OS) and progression-free survival (PFS) were studied including multi-state modelling, and analysis of conditional survival.Results:Five-year OS and PFS were 50.4% (95% CI: 39.2–60.6) and 44.0% (33.4–54.0) in patients with uric acid levels above the 75th percentile of the uric acid distribution (Q3, cut-off: 6.8 mg dl−1), and 66.2% (60.4–71.5) and 59.6% (53.7–65.0%) in patients with lower levels (log-rank P=0.002 and P=0.0045, respectively). In univariable time-to-event analysis, elevated uric acid levels were associated with a worse PFS (hazard ratio (HR) per 1 log increase in uric acid 1.47, 95% CI: 1.10–1.97, P=0.009) and a worse OS (HR=1.60, 95% CI: 1.16–2.19, P=0.004). These associations prevailed upon multivariable adjustment for the NCCN-IPI score. Uric acid levels significantly improved the predictive performance of the R-IPI and NCCN-IPI scores, and in multi-state analysis, it emerged as a highly significant predictor of an increased risk of death without developing recurrence (transition-HR=4.47, 95% CI: 2.17–9.23, P<0.0001).Conclusions:We demonstrate that elevated uric acid levels predict poor long-term outcomes in DLBCL patients beyond the NCCN-IPI risk index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.