Rationale: Cell therapy is a promising option for the treatment of acute or chronic myocardial ischemia. The intracoronary infusion of cells imposes the potential risk of cell clotting, which may be prevented by the addition of anticoagulants. However, a comprehensive analysis of the effects of anticoagulants on the function of the cells is missing.Objective: Here, we investigated the effects of heparin and the thrombin inhibitor bivalirudin on bone marrow-derived mononuclear cell (BMC) functional activity and homing capacity.
Methods and Results:
The intracellular bacterium Chlamydia trachomatis causes infections of urogenital tract, eyes or lungs. Alignment reveals homology of CT166, a putative effector protein of urogenital C. trachomatis serovars, with the N-terminal glucosyltransferase domain of clostridial glucosylating toxins (CGTs). CGTs contain an essential DXD-motif and mono-glucosylate GTP-binding proteins of the Rho/Ras families, the master regulators of the actin cytoskeleton. CT166 is preformed in elementary bodies of C. trachomatis D and is detected in the host-cell shortly after infection. Infection with high MOI of C. trachomatis serovar D containing the CT166 ORF induces actin re-organization resulting in cell rounding and a decreased cell diameter. A comparable phenotype was observed in HeLa cells treated with the Rho-GTPase-glucosylating Toxin B from Clostridium difficile (TcdB) or HeLa cells ectopically expressing CT166. CT166 with a mutated DXD-motif (CT166-mut) exhibited almost unchanged actin dynamics, suggesting that CT166-induced actin re-organization depends on the glucosyltransferase motif of CT166. The cytotoxic necrotizing factor 1 (CNF1) from E. coli deamidates and thereby activates Rho-GTPases and transiently protects them against TcdB-induced glucosylation. CNF1-treated cells were found to be protected from TcdB- and CT166-induced actin re-organization. CNF1 treatment as well as ectopic expression of non-glucosylable Rac1-G12V, but not RhoA-G14A, reverted CT166-induced actin re-organization, suggesting that CT166-induced actin re-organization depends on the glucosylation of Rac1. In accordance, over-expression of CT166-mut diminished TcdB induced cell rounding, suggesting shared substrates. Cell rounding induced by high MOI infection with C. trachomatis D was reduced in cells expressing CT166-mut or Rac1-G12V, and in CNF1 treated cells. These observations indicate that the cytopathic effect of C. trachomatis D is mediated by CT166 induced Rac1 glucosylation. Finally, chlamydial uptake was impaired in CT166 over-expressing cells. Our data strongly suggest CT166's participation as an effector protein during host-cell entry, ensuring a balanced uptake into host-cells by interfering with Rac-dependent cytoskeletal changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.