We investigate if a model can learn natural language with minimal linguistic input through interaction. Addressing this question, we design and implement an interactive language learning game that learns logical semantic representations compositionally. Our game allows us to explore the benefits of logical inference for natural language learning. Evaluation shows that the model can accurately narrow down potential logical representations for words over the course of the game, suggesting that our model is able to learn lexical mappings from scratch successfully.
Meaning Representation (AMR) has become popular for representing the meaning of natural language in graph structures. However, AMR does not represent scope information, posing a problem for its overall expressivity and specifically for drawing inferences from negated statements. This is the case with so-called "positive interpretations" of negated statements, in which implicit positive meaning is identified by inferring the opposite of the negation's focus. In this work, we investigate how potential positive interpretations (PPIs) can be represented in AMR. We propose a logically motivated AMR structure for PPIs that makes the focus of negation explicit and sketch an initial proposal for a systematic methodology to generate this more expressive structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.