1. Despite aspirations for conservation impact, mismatches between research and implementation have limited progress towards this goal. There is, therefore, an urgent need to identify how we can more effectively navigate the spaces between research and practice. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Rapid climate change is impacting biodiversity, ecosystem function, and human wellbeing. Though the magnitude and trajectory of climate change are becoming clearer, our understanding of how these changes reshape terrestrial life zones-distinct biogeographic units characterized by biotemperature, precipitation, and aridity representing broad-scale ecosystem types-is limited. To address this gap, we used high-resolution historical climatologies and climate projections to determine the global distribution of historical (1901-1920), contemporary (1979-2013), and future (2061-2080) life zones. Comparing the historical and contemporary distributions shows that changes from one life zone to another during the 20th century impacted 27 million km 2 (18.3% of land), with consequences for social and ecological systems. Such changes took place in all biomes, most notably in Boreal Forests, Temperate Coniferous Forests, and Tropical Coniferous Forests. Comparing the contemporary and future life zone distributions shows the pace of life zone changes accelerating rapidly in the 21st century. By 2070, such changes would impact an additional 62 million km 2 (42.6% of land) under "business-as-usual" (RCP8.5) emissions scenarios. Accelerated rates of change are observed in hundreds of ecoregions across all biomes except Tropical Coniferous Forests. While only 30 ecoregions (3.5%) had over half of their areas change to a different life zone during the 20th century, by 2070 this number is projected to climb to 111 ecoregions (13.1%) under RCP4.5 and 281 ecoregions (33.2%) under RCP8.5.We identified weak correlations between life zone change and threatened vertebrate richness, levels of vertebrate endemism, cropland extent, and human population densities within ecoregions, illustrating the ubiquitous risks of life zone changes to diverse social-ecological systems. The accelerated pace of life zone changes will increasingly challenge adaptive conservation and sustainable development strategies that incorrectly assume current ecological patterns and livelihood provisioning systems will persist.
Forest restoration has been proposed as a scalable nature-based solution to achieve global environmental and socio-economic outcomes and is central to many policy initiatives, such as the Bonn Challenge. Restored forests contain appreciable biodiversity, improve habitat connectivity and sequester carbon. Incentive mechanisms (e.g. payments for ecosystem services and allocation of management rights) have been a focus of forest restoration efforts for decades. Yet, there is still little understanding of their role in promoting restoration success. We conducted a systematic literature review to investigate how incentive mechanisms are used to promote forest restoration, outcomes, and the biophysical and socio-economic factors that influence implementation and program success. We found that socio-economic factors, such as governance, monitoring systems and the experience and beliefs of participants, dominate whether or not an incentive mechanism is successful. We found that approximately half of the studies report both positive ecological and socio-economic outcomes. However, reported adverse outcomes were more commonly socio-economic than ecological. Our results reveal that achieving forest restoration at a sufficient scale to meet international commitments will require stronger assessment and management of socio-economic factors that enable or constrain the success of incentive mechanisms. This article is part of the theme issue ‘Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration’.
With the intention of securing industry‐free land and seascapes, protecting wilderness entered international policy as a formal target for the first time in the zero draft of the Post‐2020 Global Biodiversity Framework under the Convention on Biological Diversity. Given this increased prominence in international policy, it is timely to consider the extent to which the construct of wilderness supports global conservation objectives. We evaluated the construct by overlaying recently updated cumulative human pressure maps that offer a global‐scale delineation of industry‐free land as wilderness with maps of carbon stock, species richness, and ground travel time from urban centers. Wilderness areas took variable forms in relation to carbon stock, species richness, and proximity to urban centers, where 10% of wilderness areas represented high carbon and species richness, 20% low carbon and species richness, and 3% high levels of remoteness (>48 h), carbon, and species richness. Approximately 35% of all remaining wilderness in 2013 was accessible in <24 h of travel time from urban centers. Although the construct of wilderness can be used to secure benefits in specific contexts, its application in conservation must account for contextual and social implications. The diverse characterization of wilderness under a global environmental conservation lens shows that a nuanced framing and application of the construct is needed to improve understanding, communication, and retention of its variable forms as industry‐free places.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.