This study investigated effects of caffeine ingestion (8 mg/kg) on maximum voluntary torque (MVT) and voluntary activation of the quadriceps during isometric, concentric and eccentric contractions. Fourteen subjects ingested caffeine and placebo in a randomized, controlled, counterbalanced, double-blind crossover design. Neuromuscular tests were performed before and 1 h after oral caffeine and placebo intake. MVTs were measured and the interpolated twitch technique was applied during isometric, concentric and eccentric contractions to assess voluntary activation. Furthermore, normalized root mean square of the EMG signal was calculated and evoked spinal reflex responses (H-reflex evoked at rest and during weak isometric voluntary contraction) as well as twitch torques were analyzed. Caffeine increased MVT by 26.4 N m (95%CI: 9.3-43.5 N m, P = 0.004), 22.5 N m (95%CI: 3.1-42.0 N m, P = 0.025) and 22.5 N m (95%CI: 2.2-42.7 N m, P = 0.032) for isometric, concentric and eccentric contractions. Strength enhancements were associated with increases in voluntary activation. Explosive voluntary strength and voluntary activation at the onset of contraction were significantly increased following caffeine ingestion. Changes in spinal reflex responses and at the muscle level were not observed. Data suggest that caffeine ingestion induced an acute increase in voluntary activation that was responsible for the increased strength regardless of the contraction mode.
ObjectivesTotal joint arthroplasty is one of the most frequent and effective surgeries today. However, despite improved surgical techniques, a significant number of implant-associated infections still occur. Suitable in vitro models are needed to test potential approaches to prevent infection. In the present study, we aimed to establish an in vitro co-culture setup of human primary osteoblasts and S. epidermidis to model the onset of implant-associated infections, and to analyze antimicrobial implant surfaces and coatings.Materials and MethodsFor initial surface adhesion, human primary osteoblasts (hOB) were grown for 24 hours on test sample discs made of polystyrene, titanium alloy Ti6Al4V, bone cement PALACOS R®, and PALACOS R® loaded with antibiotics. Co-cultures were performed as a single-species infection on the osteoblasts with S. epidermidis (multiplicity of infection of 0.04), and were incubated for 2 and 7 days under aerobic conditions. Planktonic S. epidermidis was quantified by centrifugation and determination of colony-forming units (CFU). The quantification of biofilm-bound S. epidermidis on the test samples was performed by sonication and CFU counting. Quantification of adherent and vital primary osteoblasts on the test samples was performed by trypan-blue staining and counting. Scanning electron microscopy was used for evaluation of topography and composition of the species on the sample surfaces.ResultsAfter 2 days, we observed approximately 104 CFU/ml biofilm-bound S. epidermidis (103 CFU/ml initial population) on the antibiotics-loaded bone cement samples in the presence of hOB, while no bacteria were detected without hOB. No biofilm-bound bacteria were detectable after 7 days in either case. Similar levels of planktonic bacteria were observed on day 2 with and without hOB. After 7 days, about 105 CFU/ml planktonic bacteria were present, but only in the absence of hOB. Further, no bacteria were observed within the biofilm, while the number of hOB was decreased to 10% of its initial value compared to 150% in the mono-culture of hOB.ConclusionWe developed a co-culture setup that serves as a more comprehensive in vitro model for the onset of implant-associated infections and provides a test method for antimicrobial implant materials and coatings. We demonstrate that observations can be made that are unavailable from mono-culture experiments.
Introduction The aim of the study was an evaluation of different approaches for guided bone regeneration (GBR) of peri-implant defects in an in vivo animal model. Materials and Methods In minipigs (n = 15), peri-implant defects around calcium phosphate- (CaP-; n = 46) coated implants were created and randomly filled with (1) blank, (2) collagen/hydroxylapatite/β-tricalcium phosphate scaffold (CHT), (3) CHT + growth factor cocktail (GFC), (4) jellyfish collagen matrix, (5) jellyfish collagen matrix + GFC, (6) collagen powder, and (7) collagen powder + periodontal ligament stem cells (PDLSC). Additional collagen membranes were used for coverage of the defects. After 120 days of healing, bone growth was evaluated histologically (bone to implant contact (BIC;%)), vertical bone apposition (VBA; mm), and new bone height (NBH; %). Results In all groups, new bone formation was seen. Though, when compared to the blank group, no significant differences were detected for all parameters. BIC and NBH in the group with collagen matrix as well as the group with the collagen matrix + GFC were significantly less when compared to the collagen powder group (all: p < 0.003). Conclusion GBR procedures, in combination with CaP-coated implants, will lead to an enhancement of peri-implant bone growth. There was no additional significant enhancement of osseous regeneration when using GFC or PDLSC.
AIMTo investigate osteoconductive and antimicrobial properties of a titanium-copper-nitride (TiCuN) film and an additional BONIT® coating on titanium substrates.METHODSFor micro-structuring, the surface of titanium test samples was modified by titanium plasma spray (TPS). On the TPS-coated samples, the TiCuN layer was deposited by physical vapor deposition. The BONIT® layer was coated electrochemically. The concentration of copper ions released from TiCuN films was measured by atomic absorption spectrometry. MG-63 osteoblasts on TiCuN and BONIT® were analyzed for cell adhesion, viability and spreading. In parallel, Staphylococcus epidermidis (S. epidermidis) were cultivated on the samples and planktonic and biofilm-bound bacteria were quantified by counting of the colony-forming units.RESULTSField emission scanning electron microscopy (FESEM) revealed rough surfaces for TPS and TiCuN and a special crystalline surface structure on TiCuN + BONIT®. TiCuN released high amounts of copper quickly within 24 h. These release dynamics were accompanied by complete growth inhibition of bacteria and after 2 d, no planktonic or adherent S. epidermidis were found on these samples. On the other hand viability of MG-63 cells was impaired during direct cultivation on the samples within 24 h. However, high cell colonization could be found after a 24 h pre-incubation step in cell culture medium simulating the in vivo dynamics closer. On pre-incubated TiCuN, the osteoblasts span the ridges and demonstrate a flattened, well-spread phenotype. The additional BONIT®coating reduced the copper release of the TiCuN layer significantly and showed a positive effect on the initial cell adhesion.CONCLUSIONThe TiCuNcoating inhibits the formation of bacterial biofilms on orthopedic implants by influencing the “race for the surface” to the advantage of osteoblasts.
Atmospheric pressure plasma‐jets could be an alternative method to remove bacterial biofilms on orthopaedic implants. Furthermore, plasma‐exposure might support the proliferation of osteoblasts after cleaning implants by activating the implant surface. In this comparative in vitro study, the efficacy of five different plasma sources concerning removal of bacterial biofilms and influence on human osteoblast cell attachment was tested. Two plasma sources revealed a significant reduction of bacterial viability (>90%) and enhanced spreading of osteoblastic cells. Promising results and potential for local plasma‐jet application dealing with implant‐related infections caused by bacterial biofilms was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.