During conditionally automated driving (CAD), driving time can be used for non-driving-related tasks (NDRTs). To increase safety and comfort of an automated ride, upcoming automated manoeuvres such as lane changes or speed adaptations may be communicated to the driver. However, as the driver's primary task consists of performing NDRTs, they might prefer to be informed in a nondistracting way. In this paper, the potential of using speech output to improve human-automation interaction is explored. A sample of 17 participants completed different situations which involved communication between the automation and the driver in a motion-based driving simulator. The Human-Machine Interface (HMI) of the automated driving system consisted of a visualauditory HMI with either generic auditory feedback (i.e., standard information tones) or additional speech output. The drivers were asked to perform a common NDRT during the drive. Compared to generic auditory output, communicating upcoming automated manoeuvres additionally by speech led to a decrease in self-reported visual workload and decreased monitoring of the visual HMI. However, interruptions of the NDRT were not affected by additional speech output. Participants clearly favoured the HMI with additional speech-based output, demonstrating the potential of speech to enhance usefulness and acceptance of automated vehicles.
Objective: This study aimed at investigating the driver’s takeover performance when switching from working on different non–driving related tasks (NDRTs) while driving with a conditionally automated driving function (SAE L3), which was simulated by a Wizard of Oz vehicle, to manual vehicle control under naturalistic driving conditions. Background: Conditionally automated driving systems, which are currently close to market introduction, require the user to stay fallback ready. As users will be allowed to engage in more complex NDRTs during the automated drive than when driving manually, the time needed to regain full manual control could likely be increased. Method: Thirty-four users engaged in different everyday NDRTs while driving automatically with a Wizard of Oz vehicle. After approximately either 5 min or 15 min of automated driving, users were requested to take back vehicle control in noncritical situations. The test drive took place in everyday traffic on German freeways in the metropolitan area of Stuttgart. Results: Particularly tasks that required users to turn away from the central road scene or hold an object in their hands led to increased takeover times. Accordingly, increased variance in the driver’s lane position was found shortly after the switch to manual control. However, the drivers rated the takeover situations to be mostly “harmless.” Conclusion: Drivers managed to regain control over the vehicle safely, but they needed more time to prepare for the manual takeover when the NDRTs caused motoric workload. Application: The timings found in the study can be used to design comfortable and safe takeover concepts for automated vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.