Besides cardiomyocytes (CM), the heart contains numerous interstitial cell types which play key roles in heart repair, regeneration and disease, including fibroblast, vascular and immune cells. However, a comprehensive understanding of this interactive cell community is lacking. We performed single-cell RNA-sequencing of the total non-CM fraction and enriched (Pdgfra-GFP+) fibroblast lineage cells from murine hearts at days 3 and 7 post-sham or myocardial infarction (MI) surgery. Clustering of >30,000 single cells identified >30 populations representing nine cell lineages, including a previously undescribed fibroblast lineage trajectory present in both sham and MI hearts leading to a uniquely activated cell state defined in part by a strong anti-WNT transcriptome signature. We also uncovered novel myofibroblast subtypes expressing either pro-fibrotic or anti-fibrotic signatures. Our data highlight non-linear dynamics in myeloid and fibroblast lineages after cardiac injury, and provide an entry point for deeper analysis of cardiac homeostasis, inflammation, fibrosis, repair and regeneration.
Dedifferentiation of cardiomyocytes is part of the survival program in the remodeling myocardium and may be essential for enabling cardiomyocyte proliferation. In addition to transcriptional processes, non-coding RNAs play important functions for the control of cell cycle regulation in cardiomyocytes and cardiac regeneration. Here, we demonstrate that suppression of FGFR1 and OSMR by miR-1/133a is instrumental to prevent cardiomyocyte dedifferentiation and cell cycle entry in the adult heart. Concomitant inactivation of both miR-1/133a clusters in adult cardiomyocytes activates expression of cell cycle regulators, induces a switch from fatty acid to glycolytic metabolism, and changes expression of extracellular matrix genes. Inhibition of FGFR and OSMR pathways prevents most effects of miR-1/133a inactivation. Short-term miR-1/133a depletion protects cardiomyocytes against ischemia, while extended loss of miR-1/133a causes heart failure. Our results demonstrate a crucial role of miR-1/133a-mediated suppression of Osmr and Ffgfr1 in maintaining the postmitotic differentiated state of cardiomyocytes.
Mycoplasma hominis (Mh) is an opportunistic pathogen mostly associated with urogenital infections in humans, being isolated also from infections outside the genitourinary tract. Although culture is considered a gold standard method for its identification, optimal recovery requires specialized media not commonly available in routine laboratories. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is arising as a new technique for clinical use. We tested its accuracy in the identification of Mh by analyzing 12 M. hominis specimens grown in different mediums, 4 Ureaplasma spp (Usp) specimens, and 4 artificially constructed mixtures of Usp and Mh on VITEK®MS system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.