Recent studies suggest that working memory training may benefit older adults; however, findings regarding training and transfer effects are mixed. The current study aimed to investigate the effects of a process-based training intervention in a diverse sample of older adults and explored possible moderators of training and transfer effects. For that purpose, 80 older adults (65-95 years) were assigned either to a training group that worked on visuospatial, verbal, and executive working memory tasks for 9 sessions over 3 weeks or to a control group. Performance on trained and transfer tasks was assessed in all participants before and after the training period, as well as at a 9-month follow-up. Analyses revealed significant training effects in all 3 training tasks in trained participants relative to controls, as well as near transfer to a verbal working memory task and far transfer to a fluid intelligence task. Encouragingly, all training effects and the transfer effect to verbal working memory were stable at the 9-month follow-up session. Further analyses revealed that training gains were predicted by baseline performance in training tasks and (to a lesser degree) by age. Gains in transfer tasks were predicted by age and by the amount of improvement in the trained tasks. These findings suggest that cognitive plasticity is preserved over a large range of old age and that even a rather short training regime can lead to (partly specific) training and transfer effects. However, baseline performance, age, and training gains moderate the amount of plasticity.
Background: Old-old age (80+ years) is associated with substantial cognitive decline. In this population, training-induced cognitive plasticity has rarely been studied. While earlier findings on strategy trainings suggested reduced training gains in old-old age, recent results of an extensive process-based working memory (WM) training have been more positive. Objective: Following up on previous research, the present study aimed at examining the effects of a short WM training in old-old adults and the influence of baseline WM capacity on training gains. Methods: A training group (mean age: 86.8 years) and a matched control group (mean age: 87.1 years) participated in the study. The WM training consisted of five tasks that were trained in each of 10 sessions. To evaluate possible transfer effects, executive functions were assessed with two tests before and after training. The training group was divided via median split in high- and low-capacity individuals to determine the influence of baseline WM capacity on training gains. Results: The training group improved in four of the trained tasks (medium-to-large effects). Training gains were significantly larger in the training group than in the control group in only two of those tasks. The training effects were mainly driven by the low-capacity individuals who improved in all trained tasks. No transfer effects were observed. Conclusions: These positive effects of a short WM training, particularly for low-capacity individuals, emphasize the potential for cognitive plasticity in old-old age. The absence of transfer effects may also point to its limits.
Research has shown that cognitive training can enhance performance in executive control tasks. The current study was designed to explore if executive control, specifically task switching, can be trained in adolescents, what particular aspects of executive control may underlie training and transfer effects, and if acute bouts of exercise directly prior to cognitive training enhance training effects. For that purpose, a task switching training was employed that has been shown to be effective in other age groups. A group of adolescents (10–14 years, n = 20) that received a three-session task switching training was compared to a group (n = 20) that received the same task switching training but who exercised on a stationary bike before each training session. Additionally, a no-contact and an exercise only control group were included (both ns = 20). Analyses indicated that both training groups significantly reduced their switching costs over the course of the training sessions for reaction times and error rates, respectively. Analyses indicated transfer to mixing costs in a task switching task that was similar to the one used in training. Far transfer was limited to a choice reaction time task and a tendency for faster reaction times in an updating task. Analyses revealed no additional effects of the exercise intervention. Findings thus indicate that executive control can be enhanced in adolescents through training and that updating may be of particular relevance for the effects of task switching training.
Sleep enhances memory for emotional experiences, but its influence on the emotional response associated with memories is elusive. Here, we compared the influence of nocturnal sleep on memory for negative and neutral pictures and the associated emotional response in 8-11-year-old children, i.e., an age group with heightened levels of emotional memory-related sleep features. During all sessions, emotional responses as measured by subjective ratings, the late positive potential of the EEG (LPP) and heart rate deceleration (HRD) were recorded. Sleep enhanced picture memory. Compared to dynamics across wakefulness, sleep decreased the emotional response in ratings and the LPP, while increasing the emotional response in HRD. We conclude that sleep consolidates immediate emotional meaning by enhancing more automatic emotional responses while concurrently promoting top-down control of emotional responses, perhaps through strengthening respective neocortical representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.