Background: Gestational phthalate and bisphenol A (BPA) exposure may increase the risk of adverse maternal/child health outcomes, but there are few data on the variability of urinary biomarkers before and during pregnancy.Objective: We characterized the variability of urinary phthalate metabolite and BPA concentrations before and during pregnancy and the ability of a single spot urine sample to classify average gestational exposure.Methods: We collected 1,001 urine samples before and during pregnancy from 137 women who were partners in couples attending a Boston fertility clinic and who had a live birth. Women provided spot urine samples before (n ≥ 2) and during (n ≥ 2) pregnancy. We measured urinary concentrations of monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), mono-iso-butyl phthalate, monobenzyl phthalate (MBzP), four metabolites of di-(2-ethylhexyl) phthalate (DEHP), and BPA. After adjusting for specific gravity, we characterized biomarker variability using intraclass correlation coefficients (ICCs) and conducted several surrogate category analyses to determine whether a single spot urine sample could adequately classify average gestational exposure.Results: Absolute concentrations of phthalate metabolites and BPA were similar before and during pregnancy. Variability was higher during pregnancy than before pregnancy for BPA and MBzP, but similar during and before pregnancy for MBP, MEP, and ΣDEHP. During pregnancy, MEP (ICC = 0.50) and MBP (ICC = 0.45) were less variable than BPA (ICC = 0.12), MBzP (ICC = 0.25), and ΣDEHP metabolites (ICC = 0.08). Surrogate analyses suggested that a single spot urine sample may reasonably classify MEP and MBP concentrations during pregnancy, but more than one sample may be necessary for MBzP, DEHP, and BPA.Conclusions: Urinary phthalate metabolites and BPA concentrations were variable before and during pregnancy, but the magnitude of variability was biomarker specific. A single spot urine sample adequately classified MBP and MEP concentrations during pregnancy. The present results may be related to unique features of the women studied, and replication in other pregnancy cohorts is recommended.
Obesity was associated with fewer normally fertilized oocytes, lower estradiol levels, and lower pregnancy and live birth rates. Infertile women requiring IVF should be encouraged to maintain a normal weight during treatment.
Background: Bisphenol A (BPA) is a synthetic chemical widely used in the production of polycarbonate plastic and epoxy resins found in numerous consumer products. In experimental animals, BPA increases embryo implantation failure and reduces litter size.Objective: We evaluated the association of urinary BPA concentrations with implantation failure among women undergoing in vitro fertilization (IVF).Methods: We used online solid phase extraction–high performance liquid chromatography–isotope dilution tandem mass spectrometry to measure urinary BPA concentrations in 137 women in a prospective cohort study among women undergoing IVF at the Massachusetts General Hospital Fertility Center in Boston, Massachusetts. We used logistic regression to evaluate the association of cycle-specific urinary BPA concentrations with implantation failure, accounting for correlation among multiple IVF cycles in the same woman using generalized estimating equations. Implantation failure was defined as a negative serum β-human chorionic gonadotropin test (β-hCG < 6 IU/L) 17 days after egg retrieval.Results: Among 137 women undergoing 180 IVF cycles, urinary BPA concentrations had a geometric mean (SD) of 1.53 (2.22) µg/L. Overall, 42% (n = 75) of the IVF cycles resulted in implantation failure. In adjusted models, there was an increased odds of implantation failure with higher quartiles of urinary BPA concentrations {odds ratio (OR) 1.02 [95% confidence interval (CI): 0.35, 2.95}, 1.60 (95% CI: 0.70, 3.78), and 2.11 (95% CI: 0.84, 5.31) for quartiles 2, 3, and 4, respectively, compared with the lowest quartile (p-trend = 0.06).Conclusion: There was a positive linear dose–response association between BPA urinary concentrations and implantation failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.