This research has demonstrated the utility of a rigorously calibrated, molecular mechanics/ semiempirical quantum mechanical protocol for developing stereoelectronic (Tolman) maps for phosphine ligands. A computational analysis of alkyl and aryl phosphines in common usage suggests that these ligands are quite similar stereoelectronically. A noticeable gap in the Tolman map for common phosphines is observed for large, electron-poor phosphines. Several candidates meeting these criteria were identified, the most promising of which is P(t-C 4F9)3. Phosphines in which the phosphorus participates in a ring, which comprise a very small subset of reported phosphines, have very interesting stereoelectronic properties, particularly those in which the ligating phosphorus is part of a three-membered ring. In terms of steric properties, the symmetric deformation coordinate proposed by Orpen and co-workers on the basis of crystallographic studies is calculated with sufficient accuracy using PM3(tm) to allow good confidence in predictions of novel phosphines. For quantification of the electronic properties of phosphines, we analyzed changes in the CO stretching frequency upon changing the ancillary phosphine ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.