Transforming growth factor-β (TGF-β) is a potent inducer of epithelial to mesenchymal transition (EMT). However, it remains elusive about which molecular mechanisms determine the cellular capacity to undergo EMT in response to TGF-β. We have found that both epidermal growth factor receptor (EGFR) overexpression and mutant p53 tumor suppressor genes contribute to the enrichment of an EMT-competent cellular subpopulation among telomerase-immortalized human esophageal epithelial cells during malignant transformation. EGFR overexpression triggers oncogene-induced senescence, accompanied by the induction of cyclin-dependent kinase inhibitors p15 INK4B , p16 INK4A , and p21. Interestingly, a subpopulation of cells emerges by negating senescence without loss of EGFR overexpression. Such cell populations express increased levels of zinc finger E-box binding (ZEB) transcription factors ZEB1 and ZEB2, and undergo EMT on TGF-β stimulation. Enrichment of EMT-competent cells was more evident in the presence of p53 mutation, which diminished EGFR-induced senescence. RNA interference directed against ZEB resulted in the induction of p15 INK4B and p16 INK4A , reactivating the EGFR-dependent senescence program. Importantly, TGF-β-mediated EMT did not take place when cellular senescence programs were activated by either ZEB knockdown or the activation of wild-type p53 function. Thus, senescence checkpoint functions activated by EGFR and p53 may be evaded through the induction of ZEB, thereby allowing the expansion of an EMT-competent unique cellular subpopulation, providing novel mechanistic insights into the role of ZEB in esophageal carcinogenesis. Cancer Res; 70(10); 4174-84. ©2010 AACR.
Squamous cell cancers comprise the most common type of human epithelial cancers. One subtype, esophageal squamous cell carcinoma (ESCC), is an aggressive cancer with poor prognosis due to late diagnosis and metastasis. Factors derived from the extracellular matrix (ECM) create an environment conducive to tumor growth and invasion. Specialized cancer-associated fibroblasts (CAFs) in the ECM influence tumorigenesis. We have shown previously that the nature and activation state of fibroblasts are critical in modulating the invasive ability of ESCC in an in vivo-like organotypic 3D cell culture, a form of human tissue engineering. Dramatic differences in invasion of transformed esophageal epithelial cells depended on the type of fibroblast in the matrix. We hypothesize that CAFs create an environment primed for growth and invasion through the secretion of factors. We find that fibroblast secretion of hepatocyte growth factor (HGF) fosters the ability of transformed esophageal epithelial cells to invade into the ECM, although other unidentified factors may cooperate with HGF. Genetic modifications of both HGF in fibroblasts and its receptor Met in epithelial cells, along with pharmacologic inhibition of HGF and Met, underscore the importance of this pathway in ESCC invasion and progression. Furthermore, Met activation is increased upon combinatorial overexpression of epidermal growth factor receptor (EGFR) and p53 R175H , two common genetic mutations in ESCC. These results highlight the potential benefit of the therapeutic targeting of HGF/Met signaling in ESCC and potentially other squamous cancers where this pathway is deregulated.cancer-associated fibroblasts | esophageal cancer | tumor microenvironment | organotypic culture | c-met
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.