This meta-analysis evaluated the evidence for the use of parathyroid hormone (PTH) analogues to improve fracture healing. Eligible studies were prospective randomised controlled trials of adults with acute fractures treated with a PTH analogue. PTH improved functional outcomes but did not affect fracture healing rate or reduce pain.
Background Stress fractures are a common and potentially debilitating overuse injury to bone and occur frequently among military recruits and athletes. Recovery from a lower body stress fracture typically requires several weeks of physical rehabilitation. Teriparatide, a recombinant form of the bioactive portion of parathyroid hormone (1–34 amino acids), is used to treat osteoporosis, prevent osteoporotic fractures, and enhance fracture healing due to its net anabolic effect on bone. The study aim is to investigate the effect of teriparatide on stress fracture healing in young, otherwise healthy adults undergoing military training. Methods In a two-arm, parallel, prospective, randomised controlled, intention-to-treat trial, Army recruits (n = 136 men and women, 18–40 years) with a magnetic resonance imaging (MRI) diagnosed lower body stress fracture (pelvic girdle, sacrum, coccyx, or lower limb) will be randomised to receive either usual Army standard care, or teriparatide and usual Army standard care. Teriparatide will be self-administered by subcutaneous injections (20 μg/day) for 16 weeks, continuing to 24 weeks where a fracture remains unhealed at week 16. The primary outcome will be the improvement in radiological healing by two grades or more, or reduction to grade zero, 8 weeks after randomisation, assessed using Fredericson grading of MRI by radiologists blind to the randomisation. Secondary outcomes will be time to radiological healing, assessed by MRI at 8, 10, 12, 14, 16, 20 and 24 weeks, until healed; time to clinical healing, assessed using a clinical severity score of injury signs and symptoms; time to discharge from Army physical rehabilitation; pain, assessed by visual analogue scale; health-related quality of life, using the Short Form (36) Health Survey; and adverse events. Exploratory outcomes will include blood and urine biochemistry; bone density and morphology assessed using dual-energy X-ray absorptiometry, peripheral quantitative computed tomography (pQCT), and high-resolution pQCT; physical activity measured using accelerometers; and long-term future fracture rate. Discussion This study will evaluate whether teriparatide, in addition to standard care, is more effective for stress fracture healing than standard care alone in Army recruits who have sustained a lower body stress fracture. Trial registration ClinicalTrials.govNCT04196855. Registered on 12 December 2019.
Trabecular microarchitecture contributes to bone strength, but its role in bone stress injury (BSI) risk in young healthy adults is unclear. Tibial volumetric BMD (vBMD), geometry, and microarchitecture, whole-body areal BMD, lean and fat mass, biochemical markers of bone metabolism, aerobic fitness, and muscle strength and power were measured in 201 British Army male infantry recruits (age 20.7 [4.3] years, BMI 24.0 ± 2.7 kg·m2) in week one of basic training. Tibial scans were performed at the ultra-distal site, 22.5 mm from the distal endplate of the non-dominant leg using High Resolution Peripheral Quantitative Computed Tomography (XtremeCT, Scanco Medical AG, Switzerland). Binary logistic regression analysis was performed to identify associations with lower body BSI confirmed by MRI. 20 recruits (10.0%) were diagnosed with a lower body BSI. Pre-injured participants had lower cortical area, stiffness and estimated failure load (p = 0.029, 0.012 and 0.011 respectively) but tibial vBMD, geometry, and microarchitecture were not associated with BSI incidence when controlling for age, total body mass, lean body mass, height, total 25(OH)D, 2.4-km run time, peak power output and maximum dynamic lift strength. Infantry Regiment (OR 9.3 [95%CI, 2.6, 33.4]) Parachute versus Line Infantry, (p ≤ 0.001) and 2.4-km best effort run time (1.06 [95%CI, 1.02, 1.10], p < 0.033) were significant predictors. Intrinsic risk factors, including ultradistal tibial density, geometry, and microarchitecture, were not associated with lower body BSI during arduous infantry training. The ninefold increased risk of BSI in the Parachute Regiment compared with Line Infantry suggests that injury propensity is primarily a function of training load and risk factors are population-specific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.