Vibrio cholerae is a versatile bacterium that flourishes in diverse environments, including the human intestine, rivers, lakes, estuaries, and the ocean. Surface attachment is believed to be essential for colonization of all of these natural environments. Previous studies have demonstrated that the vps genes, which encode proteins required for exopolysaccharide synthesis and transport, are required for V. cholerae biofilm development in Luria-Bertani broth. In this work, we showed that V. cholerae forms vps-dependent biofilms and vps-independent biofilms. The vps-dependent and -independent biofilms differ in their environmental activators and in architecture. Our results suggest that environmental activators of vps-dependent biofilm development are present in freshwater, while environmental activators of vps-independent biofilm development are present in seawater. The distinct environmental requirements for the two modes of biofilm development suggest that vps-dependent biofilm development and vps-independent biofilm development may play distinct roles in the natural environment.
Vibrio cholerae is both an inhabitant of estuarine environments and the etiologic agent of the diarrheal disease cholera. Previous work has demonstrated that V. cholerae forms both an exopolysaccharide-dependent biofilm and a Ca 2؉ -dependent biofilm. In this work, we demonstrate a role for the O-antigen polysaccharide of V. cholerae in Ca 2؉ -dependent biofilm development in model and true sea water. Interestingly, V. cholerae biofilms, as well as the biofilms of several other Vibrio species, disintegrate when Ca 2؉ is removed from the bathing medium, suggesting that Ca 2؉ is interacting directly with the O-antigen polysaccharide. In the Bay of Bengal, cholera incidence has been correlated with increased sea surface height. Because of the low altitude of this region, increases in sea surface height are likely to lead to transport of sea water, marine particulates, and marine biofilms into fresh water environments. Because fresh water is Ca 2؉ -poor, our results suggest that one potential outcome of an increase is sea surface height is the dispersal of marine biofilms with an attendant increase in planktonic marine bacteria such as V. cholerae. Such a phenomenon may contribute to the correlation of increased sea surface height with cholera.
Vibrio cholerae is both an intestinal pathogen and a microbe in the estuarine community. To persist in the estuarine environment, V. cholerae must adjust to changes in ionic composition and osmolarity. These changes in the aquatic environment have been correlated with cholera epidemics. In this work, we study the response of V. cholerae to increases in environmental osmolarity. Optimal growth of V. cholerae in minimal medium requires supplementation with 200 mM NaCl and KCl. However, when the NaCl concentration is increased beyond 200 mM, a proportionate delay in growth is observed. During this delay in growth, osmotic equilibrium is reached by cytoplasmic accumulation of small, uncharged solutes that are compatible with growth. We show that synthesis of the compatible solute ectoine and transport of the compatible solute glycine betaine impact the length of the osmoadaptive growth delay. We also demonstrate that high-osmolarity-adapted V. cholerae displays a growth advantage when competed against unadapted cells in high-osmolarity medium. In contrast, low-osmolarity-adapted V. cholerae displays no growth advantage when competed against high-osmolarityadapted cells in low-osmolarity medium. These results may have implications for V. cholerae population dynamics when seawater and freshwater and their attendant microbes mix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.