Highlights d 3D imaging defines ILC2 niches in perivascular regions of multiple tissues d ILC2s localize with fibroblast-like adventitial stromal cells (ASCs) d Lung ASCs produce IL-33 and TSLP to support ILC2 and Th2s d ILC2s promote ASC expansion and IL-33 production after helminth infection
Much effort has been dedicated to developing circulating tumor cells (CTC) as a noninvasive cancer biopsy, but with limited success as yet. In this study, we combine a method for isolation of highly pure CTCs using immunomagnetic enrichment/fluorescence-activated cell sorting with advanced whole genome sequencing (WGS), based on long fragment read technology, to illustrate the utility of an accurate, comprehensive, phased, and quantitative genomic analysis platform for CTCs. Whole genomes of 34 CTCs from a patient with metastatic breast cancer were analyzed as 3,072 barcoded subgenomic compartments of long DNA. WGS resulted in a read coverage of 23× per cell and an ensemble call rate of >95%. These barcoded reads enabled accurate detection of somatic mutations present in as few as 12% of CTCs. We found in CTCs a total of 2,766 somatic single-nucleotide variants and 543 indels and multi-base substitutions, 23 of which altered amino acid sequences. Another 16,961 somatic single nucleotide variant and 8,408 indels and multi-base substitutions, 77 of which were nonsynonymous, were detected with varying degrees of prevalence across the 34 CTCs. On the basis of our whole genome data of mutations found in all CTCs, we identified driver mutations and the tissue of origin of these cells, suggesting personalized combination therapies beyond the scope of most gene panels. Taken together, our results show how advanced WGS of CTCs can lead to high-resolution analyses of cancers that can reliably guide personalized therapy. .
Summary Hearing loss is a common and disabling condition, yet our understanding of the physiologic workings of the inner ear has been limited by longstanding difficulty characterizing the function and characteristics of the many diverse, fragile, and rare cell types in the cochlea. Using single-cell RNA-sequencing and a novel clustering algorithm, CellFindR, we created a developmental map of the mouse and human cochlea, identifying multiple previously undescribed cell types, progenitor populations, and predicted lineage relationships. We additionally associated the expression of known hearing loss genes to the cell types and developmental timepoints in which they are expressed. This work will serve as a resource for understanding the molecular basis of hearing and designing therapeutic approaches for hearing restoration.
The effectiveness of humanitarian programs normally is evaluated according to a limited number of pre-defined objectives. These objectives typically represent only selected positive expected impacts of program interventions and as such, are inadequate benchmarks for understanding the overall effectiveness of aid.This is because programs also have unexpected impacts (both positive and negative) as well as expected negative impacts and expected positive impacts beyond the program objectives.The authors contend that these other categories of program impacts also should be assessed, and suggest a methodology for doing so that draws on input from the perspectives of beneficiaries. This paper includes examples of the use of this methodology in the field. Finally, the authors suggest future directions for improving this type of expanded assessment and advocate for its widespread use, both within and without the field of disaster response.
Seven sites ranging from 15 to 135 km from Mount St. Helens were selected to study the impact of air-fall tephra on the growth of Abiesamabilis (Dougl.) Forbes, A. procera Rehd., Pseudotsugamenziesii (Mirb.) Franco, Tsugaheterophylla (Raf.) Sarg., and T. mertensiana (Bong.) Carr. As tephra depth increased, there was a corresponding increase in visible foliar damage and associated decreases in diameter and height growth. Reduction in diameter growth was greater than reduction in height growth. The reduction in diameter growth approached 50% in both trees and saplings of A. amabilis. Growth reduction in true firs was greater than in associated species. This difference was related to their greater capacity for interception and retention of air-fall tephra. Damage to trees, and resulting growth reductions, were due to tephra coverage of both the foliage and the soil. Coverage of the foliage resulted in foliar damage, foliage abscission and reduction of total tree foliar area, and increased fine root mortality. Tephra coverage of the soil had the potential to restrict oxygen diffusion into the soil. However, soil oxygen concentrations less than 10% were measured only once over a 2-year period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.