Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and some of its forms are progressive. This study describes the profiling of hepatic gene expression and serum protein content in patients with different subtypes of NAFLD. Liver biopsy specimens from 98 bariatric surgery patients were classified as normal, steatosis alone, steatosis with nonspecific inflammation, and nonalcoholic steatohepatitis (NASH). Microarray hybridizations were performed in triplicate and the microarray expression levels of a selected group of genes were confirmed using real-time quantitative reverse-transcriptase polymerase chain reaction. Serum protein profiles of the same patients were determined by SELDI-TOF mass spectrometry. Of 98 obese patients, 91 were diagnosed with NAFLD (12 steatosis alone, 52 steatosis with nonspecific inflammation, and 27 NASH), and 7 patients without NAFLD served as obese controls. Each group of NAFLD patients was compared with the obese controls, and 22 genes with more than twofold differences in expression levels were revealed. Proteomics analyses were performed for the same group comparisons and revealed twelve significantly different protein peaks. In conclusion, this genomic/proteomic analysis suggests differential expression of several genes and protein peaks in patients within and across the forms of NAFLD. These findings may help clarify the pathogenesis of NAFLD and identify potential targets for therapeutic intervention. (HEPATOLOGY 2005;42:665-674.)
Homoserine transsuccinylase catalyzes the succinylation of homoserine in several bacterial species, the first unique step in methionine biosynthesis in these organisms. The enzyme from Escherichia coli is reported to be a dimer and uses a ping-pong catalytic mechanism involving transfer of succinate from succinyl-CoA to an enzyme nucleophile, followed by transfer to homoserine to form O-succinylhomoserine. Site-directed mutagenesis and steady-state kinetics were used to identify three amino acids that participate in catalysis. Mutation of cysteine-142 to serine or alanine eliminated all measurable activity, suggesting this amino acid acts as the catalytic nucleophile. Cysteine nucleophiles are often deprotonated by histidine residues, and histidine-235 was identified as the sole absolutely conserved histidine residue among family members. This residue was mutated to both alanine and asparagine, and no activity was observed with either mutant. Lysine-47 had been previously identified as an essential residue. Mutation of this amino acid to arginine reduced catalytic activity by greater than 90%, while mutation to alanine yielded an enzyme with <1% of wild-type activity. A pH-rate profile of the K47R mutant demonstrated that this amino acid participates in the first half reaction. The data presented here provide the first detailed description of the homoserine transsuccinylase active site and provide a framework for additional mechanistic characterization of this enzyme.
Substrate specificity within the family of enzymes designated as homoserine transsuccinylases is variable, with some organisms utilizing succinyl-CoA and other organisms utilizing acetyl-CoA. In this study it is shown that the enzyme from Bacillus cereus uses acetyl-CoA as its acyl donor, but its catalytic rate is significantly lower than other HTS family members. BcHTS is inactivated by both iodoacetamide and diethyl pyrocarbonate and the enzyme can be partially protected from inactivation by the presence of succinyl-CoA. This leads to the conclusion that BcHTS can bind both acetyl-CoA and succinyl-CoA and suggests that it may represent an intermediate between the succinate-transferring HTS family members and the acetate-transferring HTS family members. The B. cereus enzyme was unable to rescue growth of an Escherichia coli strain lacking a functional transsuccinylase, however.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.