Moose (Alces alces) have experienced considerable declines along the periphery of their range in the northeastern United States. In Vermont, the population declined 45% from 2010 to 2017 despite minimal hunter harvest and adequate habitat. Similarly, nearby populations recently experienced epizootics characterized by >50% mortality. Declines have largely been associated with the effects of winter ticks (Dermacentor albipictus), but uncertainty exists about the effects of environmental and other parasite‐related conditions on moose survival. We examined patterns of moose survival among a radio‐collared population (n = 127) in Vermont from 2017 to 2019. Our objectives were to estimate causes of mortality and model survival probability as a function of individual and landscape variables for calves (<1 yr) and adults (≥1 yr). Observed adult survival was 90% in 2017, 84% in 2018, and 86% in 2019, and winter calf survival was 60% in 2017, 50% in 2018, and 37% in 2019. Winter tick infestation was the primary cause of mortality (91% of calves, 25% of adults), and 32% of all mortalities had evidence of meningeal worm (Parelaphostrongylus tenuis). Other sources of mortality such as vehicles, harvest, predation, deep snow, and other parasitic infections were negligible. The best supported calf model included sex differences and negative effects of tick engorgement (%/week) and parasite level (roundworm and lungworm). The best supported adult model included the effect of cumulative tick engorgement (cumulative %/week), which negatively affected survival. Our results indicate that winter tick engorgement strongly affects survival, and is probably compounded by the presence of meningeal worm and other parasites. Reduced tick effects may be achieved by decreasing moose density through harvest and managing late winter habitat to minimize tick density. Management of white‐tailed deer (Odocoileus virginianus) density may also affect the transmission of meningeal worm. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.
The moose (Alces alces) is a charismatic species in decline across much of their southern distribution in North America. In the northeastern United States, much of the reduction has been attributed to winter tick (Dermacentor albipictus) infestations. Winter ticks are fairly immobile throughout all life stages, and therefore their distribution patterns at any given time are shaped largely by the occurrence of moose across the landscape during the peak of two critical time periods: fall questing (when ticks latch onto moose) and spring drop-off (when engorged female ticks detach from moose). We used recent land cover and lidar data within a dynamic occupancy modeling framework to estimate first-order habitat selection (use vs. non-use) of female moose (n = 74) during the tick questing and drop-off periods. Patch extinction and colonization rates between the fall questing and spring drop-off periods were strongly influenced by habitat and elevation, but these effects were diminished during the fall questing period when moose were more active across the landscape. From the fall questing period to the spring drop-off period, patches where colonization was high and extinction was low had higher proportions of young (shrub/forage) mixed forest at higher elevations. Further, we evaluated the fitness consequences of habitat selection by adult females during the fall questing period, when females and their calves acquire ticks. We compared Resource Selection Functions (RSF) for five females that successfully reared a calf to age 1 with five females whose calves perished due to ticks. Adult female moose whose offspring perished selected habitats in the fall that spatially coincided with areas of high occupancy probability during the spring tick drop-off period. In contrast, adult female moose whose offspring survived selected areas where the probability of occupancy during the spring drop-off was low; at present, natural selection may favor female adults who do not select the same habitats in fall as in spring. Our model coefficients and mapped results define “hotspots” that are likely encouraging the deleterious effects of the tick-moose cycle. These findings fill knowledge gaps about moose habitat selection that may improve the effectiveness of management aimed at reversing declining population trends.
Moose populations in the northeastern United States have declined over the past 15 years, primarily due to the impacts of winter ticks. Research efforts have focused on the effects of winter tick infestation on moose survival and reproduction, but stress and nutritional responses to ticks and other stressors remain understudied. We examined the influence of several environmental factors on moose calf stress hormone metabolite concentrations and nutritional restriction in Vermont, USA. We collected 407 fecal and 461 snow urine samples from 84 radio-collared moose calves in the winters of 2017–2019 (January–April) to measure fecal glucocorticoid metabolites (fGCM) concentrations and urea nitrogen:creatinine (UN:C) ratios. We used generalized mixed-effects models to evaluate the influence of individual condition, winter ticks, habitat, climate and human development on stress and nutrition in calf moose. We then used these physiological data to build generalized linear models to predict calf winter survival. Calf fGCM concentrations increased with nutritional restriction and snow depth during adult winter tick engorgement. Calf UN:C ratios increased in calves with lighter weights and higher tick loads in early winter. Calf UN:C ratios also increased in individuals with home ranges composed of little deciduous forests during adult winter tick engorgement. Our predictive models estimated that winter survival was negatively related to UN:C ratios and positively related to fGCM concentrations, particularly in early winter. By late March, as winter ticks are having their greatest toll and endogenous resources become depleted, we estimated a curvilinear relationship between fGCM concentrations and survival. Our results provide novel evidence linking moose calf stress and nutrition, a problematic parasite and challenging environment and winter survival. Our findings provide a baseline to support the development of non-invasive physiological monitoring for assessing environmental impacts on moose populations.
Genetic diversity is critical to a population’s ability to overcome gradual environment change. Large-bodied wildlife existing in regions with relatively high human population density are vulnerable to isolation-induced genetic drift, population bottlenecks, and loss of genetic diversity. Moose (Alces americanus americanus) in eastern North America have a complex history of drastic population changes. Current and potential threats to moose populations in this region could be exacerbated by loss of genetic diversity and connectivity among subpopulations. Existing genetic diversity, gene flow, and population clustering and fragmentation of eastern North American moose are not well quantified, while physical and anthropogenic barriers to population connectivity already exist. Here, single nucleotide polymorphism (SNP) genotyping of 507 moose spanning five northeastern U.S. states and one southeastern Canadian province indicated low diversity, with a high proportion of the genomes sharing identity-by-state, with no consistent evidence of non-random mating. Gene flow estimates indicated bidirectionality between all pairs of sampled areas, with magnitudes reflecting clustering and differentiation patterns. A Discriminant Analysis of Principal Components analysis indicated that these genotypic data were best described with four clusters and indicated connectivity across the Saint Lawrence River and Seaway, a potential physical barrier to gene flow. Tests for genetic differentiation indicated restricted gene flow between populations across the Saint Lawrence River and Seaway, and between many sampled areas facing expanding human activity. These results document current genetic variation and connectivity of moose populations in eastern North America, highlight potential challenges to current population connectivity, and identify areas for future research and conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.