The transcription factor p63 is a key mediator of epidermal development. Point mutations in p63 in patients lead to developmental defects, including orofacial clefting. To date, knowledge on how pivotal the role of p63 is in human craniofacial development is limited. Using an inducible transdifferentiation model, combined with epigenomic sequencing and multicohort meta-analysis of genome-wide association studies data, we show that p63 establishes enhancers at craniofacial development genes to modulate their transcription. Disease-specific substitution mutation in the DNA binding domain or sterile alpha motif protein interaction domain of p63, respectively, eliminates or reduces establishment of these enhancers. We show that enhancers established by p63 are highly enriched for single-nucleotide polymorphisms associated with nonsyndromic cleft lip ± cleft palate (CL/P). These orthogonal approaches indicate a strong molecular link between p63 enhancer function and CL/P, illuminating molecular mechanisms underlying this developmental defect and revealing vital regulatory elements and new candidate causative genes.
Altered RNA expression of repetitive sequences and retrotransposition are frequently seen in colorectal cancer, implicating a functional importance of repeat activity in cancer progression. We show the nucleoside reverse transcriptase inhibitor 3TC targets activities of these repeat elements in colorectal cancer preclinical models with a preferential effect in p53-mutant cell lines linked with direct binding of p53 to repeat elements. We translate these findings to a human phase II trial of single-agent 3TC treatment in metastatic colorectal cancer with demonstration of clinical benefit in 9 of 32 patients. Analysis of 3TC effects on colorectal cancer tumorspheres demonstrates accumulation of immunogenic RNA:DNA hybrids linked with induction of interferon response genes and DNA damage response. Epigenetic and DNA-damaging agents induce repeat RNAs and have enhanced cytotoxicity with 3TC. These findings identify a vulnerability in colorectal cancer by targeting the viral mimicry of repeat elements. Significance: Colorectal cancers express abundant repeat elements that have a viral-like life cycle that can be therapeutically targeted with nucleoside reverse transcriptase inhibitors (NRTI) commonly used for viral diseases. NRTIs induce DNA damage and interferon response that provide a new anticancer therapeutic strategy.
The tumor suppressor protein p53 is activated in response to diverse intrinsic and extrinsic cellular stresses and controls a broad cell-protective gene network. Whether p53:DNA binding and subsequent transcriptional activation differs downstream of these diverse intrinsic and extrinsic activators is controversial. Using primary human fibroblasts, we assessed the genome-wide profile of p53 binding, chromatin structure, and transcriptional dynamics after either genotoxic or nongenotoxic activation of p53. Activation of p53 by treatment with either etoposide or the smallmolecule MDM2 inhibitor nutlin 3A yields strikingly similar genome-wide binding of p53 and concomitant changes to local chromatin modifications and structure. DNA damage, but not p53 activation per se, leads to increased expression of genes in an inflammatory cytokine pathway. The NF-κB pathway inhibitor Bay 11-7082 abrogates etoposide-mediated activation of the inflammation gene signature but does not affect expression of canonical p53 target genes. Our data demonstrate that differential activation of p53 within the same cell type leads to highly similar genome-wide binding, chromatin dynamics, and gene expression dynamics and that DNA damage-mediated signaling through NF-κB likely controls the observed pro-inflammatory cytokine gene expression pattern.
Splicing is the molecular process by which introns are removed from pre-mRNA and exons are joined together to form the sequence of the mature mRNA. Measuring the timing of splicing relative to the transcription of nascent RNA has yielded conflicting interpretations. Biochemical fractionation suggests that RNA is spliced primarily during the process of transcription, but imaging of nascent RNA suggests that splicing happens after the process of transcription has been completed. We use single molecule RNA FISH together with expansion microscopy to measure the spatial distribution of nascent and partially spliced transcripts in mammalian cells, allowing us to infer the delay between when an intron is transcribed and when it is spliced out of a pre-mRNA. We show that 4 out of 4 genes we interrogated exhibit some post-transcriptional splicing, and that introns can be spliced in any order. We also show that completely synthesized RNA move slowly through a transcription site proximal zone while they undergo additional splicing and potentially other processing after transcription is completed. In addition, upon leaving this zone, some genes' transcripts localize to speckles during the process of splicing but some appear to traffic freely through the nucleus without localizing to any other nuclear compartment. Taken together, our observations suggest that the regulation of the timing and localization of splicing is specific to individual introns, as opposed to the previously surmised immediate excision of introns after transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.